ON THE DIVISORS OF SMARANDACHE UNARY SEQUENCE

(Amarnath Murthy, Superintending Engineer(E\&T),Well Logging Section Oil And Natural Gas Corporation Ltd., Chandkheda, Ahmedabad, India380005)

ABSTRACT: Smarandache Unary Sequence is defined as follows:
$u(n)=1111 \ldots, p_{n}$ digits of " 1 ", where p_{n} is the $n^{\text {th }}$ prime.
11, 111, 11111, 1111111
Are there an infinite number of primes in this sequence? It is still an unsolved problem. The following property of a divisor of $u(n)$ is established.
If ' d ' is a divisor of $u(n)$ then $d \equiv 1\left(\bmod p_{n}\right)$., for all $n>3 \cdots(1)$

DESCRIPTION: Let $I(m)=1111, \ldots m$ times $=\left(10^{m}-1\right) / 9$
Then $u(n)=1\left(p_{n}\right)$.
Following proposition will be applied to establish (1).
Proposition: $I(p-1) \equiv 0(\bmod p) .-----(2)$
PROOF: 9 divides $10^{p-1}-1$. From Fermat's little theorem if $p \geq 7$ is a prime then p divides $\left(10^{p-1}-1\right) / 9$
as $(p, 9)=(p, 10)=1$. Hence p divides $I(p-1)$
Coming back to the main proposition, let ' d ' be a divisor of $u(n)$.
Let $d=. p^{a} q^{b} r^{c}$. , where p, q, r, are prime factors of d.
p divides ' d ' $\Rightarrow p$ divides $u(n)$ also p divides $\mathrm{l}(p-1)$ from proposition (2). in other words
p divides $\left(10^{p-1}-1\right) / 9$ and p divides $\left(10^{p}-1\right) / 9$
p divides $\left(10^{A(p-1)}-1\right) / 9$ and p divides $\left(\begin{array}{ll}10 \mathrm{~B} \cdot \mathrm{p} & -1) / 9\end{array}\right.$
p divides $\left(10^{(\mathrm{A}(\mathrm{p}-1)-\mathrm{B} \cdot \mathrm{p}}\right) / 9$
p divides $10^{B \cdot p}\left\{\left(10^{\mathrm{A}(p-1)-\mathrm{B} \cdot \mathrm{p}}-1\right) / 9\right\}$.
p divides $\left(10^{A(p-1)-B \cdot p}-1\right) / 9$.
There exist A and B such that
$A(p-1)-B \cdot p_{n}=\left(p-1, p_{n}\right) \cdot A s p_{n}$ is a prime there are two possibilities :
(i). $\quad(p-1$
$\left.p_{n}\right)=1$ or
(ii). $\left(p-1, p_{n}\right)=p_{n}$.

In the first case, from (3) we get p divides (10-1)/9 or p
divides 1 , which is absurd as $p>1$. hence $\left(p-1, p_{n}\right)=p_{n}$ or p_{n} divides $p-1$

$$
\begin{aligned}
& p \equiv 1\left(\bmod p_{n}\right) \\
\Rightarrow \quad & p^{a} \equiv 1\left(\bmod p_{n}\right)
\end{aligned}
$$

on similar lines

$$
\begin{gathered}
q^{b} \equiv 1\left(\bmod p_{n}\right) \\
\text { hence } d=p^{a} q^{b} r^{c} \ldots \equiv 1\left(\bmod p_{n}\right)
\end{gathered}
$$

This completes the proof.

> COROLLARY: For any prime p there exists at least one prime q such that $$
q \equiv 1(\bmod p)
$$

Proof: As $u(n) \equiv 1\left(\bmod p_{n}\right)$, and also every divisor of $u(n)$ is
$\equiv 1\left(\bmod p_{n}\right)$, the corollary stands proved. Also clearly such a ' q ' is greater than p, this gives us a proof of the infinitude of the prime numbers as a by product.

REFERENCES;

1."Smarandache Partition Type And Other Sequences", by

Eng. Dr. Fanel IACOBESCU , Bulletin of Pure and Applied Sciences. Vol. 16 E(No. 2) 1997; P. 240.
2. "On The Infinitude of Prime Numbers" . by Amarnath Murthy , The Mathematics Education, INDIA , Vol. XXIX, No. 1, March,1995 .

