## ON THE EQUATION $S(m n)=m^{k} S(n)$

Maohua Le
Abstract. In this paper we prove that the equation $S(m n)=m^{k} S(n)$ has only the positive integer solution ( $m, n, k$ ) $=(2,2,1$ ) with $m>1$ and $n>1$.

Key words Smarandache function, equation, positve integer solution.

For any positive integer $a$, let $S(a)$ be the Smarandache function.Muller [2,Problem 21] proposed a problem concerning the integer solutions ( $m, n, k$ ) of the equation

$$
\begin{equation*}
S(m n)=m^{k} S(n), \quad m \quad>1, n>1 . \tag{1}
\end{equation*}
$$

In this paper we determine all solutions of (1) as follows.
Theorem. The equation (1) has only the solution $(m, n, k)=(2,2,1)$.
Proof. By [1,Theorem],we have

$$
\begin{equation*}
S(m n) \leqslant S(m)+S(n) \tag{2}
\end{equation*}
$$

Hence, if ( $m, n, k$ ) is a solution of (1), then from (2)we obtain

$$
\begin{equation*}
m^{k} S(n) \leqslant S(m)+S(n) . \tag{3}
\end{equation*}
$$

By (3),we get

$$
\begin{equation*}
m^{k} \leqslant \frac{S(m)}{S(n)}+1 . \tag{4}
\end{equation*}
$$

Since $\quad S(m) \leqslant m$,we see from (4)that

$$
\begin{equation*}
m^{k} \leqslant \frac{m}{S(n)}+1 \tag{5}
\end{equation*}
$$

$$
\text { If } n>2 \text {, then } S(n) \geqslant 3 \text { and }
$$

$$
\begin{equation*}
m \leqslant m k \leqslant \frac{m}{3}+1 \tag{6}
\end{equation*}
$$

by(5). However,we get from (6) that $m \leqslant 1 / 2$,a
contradiction. So we have $n=2$. Then, we get $S(n)=2$ and

$$
\begin{equation*}
m^{k} \leqslant \frac{m}{2}+1 \tag{7}
\end{equation*}
$$

by (5).
If $m>2$, then $m / 2>1$, and

$$
\begin{equation*}
m \leqslant m^{k}<\frac{m}{2}+\frac{m}{2} \quad=m \tag{8}
\end{equation*}
$$

by (7).This is a contradiction. Therefore, we get $m=2$ and

## (9) <br> $2^{k} \leqslant 1+1=2$,

by (7). Thus, we see from (9) that (1) has only the solution $(m, n, k)=(2,2,1)$. The theorem is proved.

## References

[1] M-.H.Le,An inequality concerning the Smarandache function, Smarandache Notions J. 9(1998), 124-125.
[2] R.Muller,Unsolved Problems Related to Smarandache Function,Number Theory Publishing Compary,1997.

Department of Mathematis<br>Zhanjiang Normal College<br>Zhanjiang, Guangdong<br>P.R. CHINA

