ON THE FUNCTIONAL EQUATION $(S(n))^{r} + (S(n))^{r-1} + \dots + S(n) = n$

Rongji Chen

Abstract For any positive integer n, let S(n) be the Smarandache function of n. Let r be a fixed positive integer with $r \ge 3$. In this paper we give a necessary and sufficient condition for the functional equation $(S(n))^r + (S(n))^{r-1} + \dots + S(n) = n$ to have positive integer solutions n.

Key words Smarandache function, functional equation, solvability.

1 Introduction

Let \mathbb{N} be the set of all positive integers. For any $n \in \mathbb{N}$, let the arithmetic function

(1) $S(n) = \min\{a \mid a \in \mathbb{N}, n \mid a!\}$

Then S(n) is called the Smarandache function of n For a fixed $r \in \mathbb{N}$ with $r \ge 3$, we discuss the solvability of the functional equation

(2) $(S(n))^r + (S(n))^{r-1} + \dots + S(n) = n, n \in \mathbb{N}$

There are many unsolved questions concerned this equation (see [1]). A computer search showed that if r=3, then (2) has no solution n with $n \leq 10000$. In this paper we prove a general result as follows.

Theorem For any fixed $r \in \mathbb{N}$ with $r \ge 3$, a positive integer *n* is a solution of (2) if and only if $n = p(p^{r-1} + p^{r-2} + \dots + 1)$, where *p* is an odd prime satisfying $p^{r-1} + p^{r-2} + \dots + 1 | (p-1)!$.

By our theorem, we find that if r = 3, then (2) has exactly two solutions n = 305319 and n = 499359 with n < 1000000.

2 Preliminaries

Lemma 1 For any $u, v \in \mathbb{N}$ with gcd(u, v) = 1, we have S(uv) = max(S(u), S(v)).

Proof Let a = S(u), b = S(v) and c = S(uv). By (1), a, b, c are least positive integers satisfying

(3) u|a!, v|b!, uv|c!,

respectively. We see from (3) that

(4)
$$c \ge \max(a, b)$$

If $a \ge b$, then u | a ! and v | a ! by (3). Since gcd (u, v) = 1, we get uv | a !. It implies that $a \ge c$. Therefore, by (4), we obtain $c = a = \max(a, b)$. By the same method, we can prove that if $a \le b$, then $c = b = \max(a, b)$. The lemma is proved.

Lemma 2 If S(u) = u, then u = 1, 4 or p, where p is a prime. **Proof** See [3].

Lemma 3 If u > 1, where $u \in \mathbb{N}$, then u has a prime factor p such that p | S(u).

Proof Let $u = p_{1^{i}}^{r_{1}} p_{2^{i}}^{r_{2}} \cdots p_{k^{t}}^{r_{t}}$ be the factorization of u. It is a well known fact that $S(u) = \max(S(p_{1^{i}}^{r_{1}}), S(p_{2^{i}}^{r_{2}}), \cdots, S(p_{k^{t}}^{r_{t}}))$ and $p_{i} | S(p_{i^{i}}^{r_{i}})$ for $i = 1, 2, \cdots, k$ (see [2]). The lemma follows immediately.

3 Proof of Theorem

Let $n = p(p^{r-1} + p^{r-2} + \dots + 1)$, where p is an odd prime satisfying $p^{r-1} + p^{r-2} + \dots + 1 | (p-1)!$. Then, by (1), we get S(n) = p. Therefore, n is a solution of (2).

On the other hand, let n be a solution of (2). Then we have n > 1. 1. Further, let t = S(n). We get from (2) that

(5)
$$t(t^{r-1}+t^{r-2}+\cdots+1)=n$$
.

Since $gcd(t, t^{r-1} + t^{r-2} + \dots + 1) = 1$, by Lemma 1, we see from (5) that

(6)
$$t = S(n) = S(t(t^{r-1} + t^{r-2} + \dots + 1))$$

 $= \max(S(t), S(t^{r-1} + t^{r-2} + \dots + 1))$
If $S(t) \leq S(t^{r-1} + t^{r-2} + \dots + 1)$, then from (6) we get
(7) $t = S(t^{r-1} + t^{r-2} + \dots + 1)$

Since $t^{r-1} + t^{r-2} + \dots + 1 > 1$, by Lemma 3, $t^{r-1} + t^{r-2} + \dots + 1$ has a prime factor p such that $p | S(t^{r-1} + t^{r-2} + \dots + 1)$. Hence, by (7), we get p | t. However, since gcd $(t, t^{r-1} + t^{r-2} + \dots + 1) = 1$, it is impossible. So we have

(8)
$$S(t) > S(t^{r-1} + t^{r-2} + \dots + 1)$$

and

$$(9) t=S(t),$$

by (6)

On applying Lemma 2, we see from (9) that either t = 4 or t = p, where p is a prime. If t = 4, then n = 4, 8, 12 or 24. However, since $r \ge 3$, we get from (5) that $t^r + t^{r-1} + \dots + t \ge 4^3 + 4^2 + 4 > 24 \ge n$, a contradiction. If t = p, then from (8) and (9) we obtain (10) $S(p^{r-1} + p^{r-2} + \dots + 1) < S(t) = S(p) = p$ It implies that $p^{r-1} + p^{r-2} + \dots + 1 | (p-1)!$ and $p \ge 2$. Therefore, we see from (5) that if *n* is a solution of (2), then $n = p(p^{r-1} + p^{r-2} + \dots + 1)$, where *p* is an odd prime satisfying $p^{r-1} + p^{r-2} + \dots + 1 | (p - 1)!$. Thus, the theorem is proved.

References

- [1] C. Ashbacher, Unsolved problems, Smarandache Notions J., 9 (1998), 152-155.
- [2] C. Dumitrescu and V. Seleacu, Some Notions and Questions in Number Theory, Erhus Univ. Press, Glendale, 1994.
- [3] M. H. Le, On the diophantine equation S(n) = n, Smarandache Notions J., 10(1999), 142-143.

Department of Mathematics Maoming Educational College Maoming, Guangdong P. R.China