ON THE FUNCTIONAL EQUATION
 $(S(n))^{r}+(S(n))^{r-1}+\cdots+S(n)=n$

Rongji Chen

Abstract

For any positive integer n, let $S(n)$ be the Smarandache function of n. Let r be a fixed positive integer with $r \geqslant 3$. In this paper we give a necessary and sufficient condition for the functional equation $(S(n))^{r}+(S(n))^{r-1}+\cdots+S(n)=n$ to have positive integer solutions n.

Key words Smarandache function, functional equation, solvability.

1 Introduction

Let \mathbb{N} be the set of all positive integers. For any $n \in \mathbb{N}$, let the arithmetic function

$$
\begin{equation*}
S(n)=\min \{a|a \in \mathbb{N}, n| a!\} \tag{1}
\end{equation*}
$$

Then $S(n)$ is called the Smarandache function of n For a fixed $r \in \mathbb{N}$ with $r \geqslant 3$, we discuss the solvability of the functional equation

$$
\begin{equation*}
(S(n))^{r}+(S(n))^{r-1}+\cdots+S(n)=n, n \in \mathbb{N} \tag{2}
\end{equation*}
$$

There are many unsolved questions concerned this equation(see [1]). A computer search showed that if $r=3$, then (2) has no solution n with n $\leqslant 10000$. In this paper we prove a general result as follows.

Theorem For any fixed $r \in$, with $r \geqslant 3$, a positive integer n is a solution of (2) if and only if $n=p\left(p^{r-1}+p^{r-2}+\cdots+1\right)$, where p is an odd prime satisfying $p^{r-1}+p^{r-2}+\cdots+1 \mid(p-1)!$.

By our theorem, we find that if $r=3$, then (2) has exactly two solutions $n=305319$ and $n=499359$ with $n<1000000$.

2 Preliminaries

Lemma 1 For any $u, v \in \mathbb{N}$ with $\operatorname{gcd}(u, v)=1$, we have $S(u v)=\max (S(u), S(v))$.

Proof Let $a=S(u), b=S(v)$ and $c=S(u v)$. By (1), a, b, c are least positive integers satisfying

$$
\begin{equation*}
u|a!, v| b!, u v \mid c!, \tag{3}
\end{equation*}
$$

respectively. We see from (3) that

$$
\begin{equation*}
c \geqslant \max (a, b) \tag{4}
\end{equation*}
$$

If $a \geqslant b$, then $u \mid a!$ and $v \mid a!$ by (3). Since $\operatorname{gcd}(u, v)=1$, we get $u v \mid a$!. It implies that $a \geqslant c$. Therefore, by (4), we obtain $c=a$ $=\max (a, b)$. By the same method, we can prove that if $a \leqslant b$, then c $=b=\max (a, b)$. The lemma is proved.

Lemma 2 If $S(u)=u$, then $u=1,4$ or p, where p is a prime.
Proof See [3].
Lemma 3 If $u>1$, where $u \in \mathbb{N}$, then u has a prime factor p such that $p \mid S(u)$.

Proof Let $u=p_{1}^{r} p_{2}^{r} \cdots p_{k}^{r}$ be the factorization of u. It is a well known fact that $S(u)=\max \left(S\left(p_{1}^{r_{1}}\right), S\left(p_{z}^{r_{z}}\right), \cdots, S\left(p_{k}^{r_{k}}\right)\right)$ and $p_{i} \mid S\left(p_{i}^{r_{i}}\right)$ for $i=1,2, \cdots, k$ (see [2]). The lemma follows immediately.

Let $n=p\left(p^{r-1}+p^{r-2}+\cdots+1\right)$, where p is an odd prime satisfying $p^{r-1}+p^{r-2}+\cdots+1 \mid(p-1)!$. Then, by (1), we get $S(n)=p$. Therefore, n is a solution of (2).

On the other hand, let n be a solution of (2). Then we have $n>$ 1. Further, let $t=S(n)$. We get from (2) that

$$
\begin{equation*}
t\left(t^{r-1}+t^{r-2}+\cdots+1\right)=n . \tag{5}
\end{equation*}
$$

Since $\operatorname{gcd}\left(t, t^{r-1}+t^{r-2}+\cdots+1\right)=1$, by Lemma 1 , we see from (5) that
(6) $t=S(n)=S\left(t\left(t^{r-1}+t^{r-2}+\cdots+1\right)\right)$

$$
=\max \left(S(t), S\left(t^{r-1}+t^{r-2}+\cdots+1\right)\right)
$$

If $S(t) \leqslant S\left(t^{r-1}+t^{r-2}+\cdots+1\right)$, then from (6) we get

$$
\begin{equation*}
t=S\left(t^{r-1}+t^{r-2}+\cdots+1\right) \tag{7}
\end{equation*}
$$

Since $t^{r-1}+t^{r-2}+\cdots+1>1$, by Lemma $3, t^{r-1}+t^{r-2}+\cdots+1$ has a prime factor p such that $p \mid S\left(t^{r-1}+t^{r-2}+\cdots+1\right)$. Hence, by (7), we get $p \mid t$. However, since $\operatorname{gcd}\left(t, t^{r-1}+t^{r-2}+\cdots+1\right)=1$, it is impossible. So we have
(8) $\quad S(t)>S\left(t^{r-1}+t^{r-2}+\cdots+1\right)$
and
(9) $t=S(t)$,
by (6)
On applying Lemma 2, we see from (9) that either $t=4$ or $t=p$, where p is a prime. If $t=4$, then $n=4,8,12$ or 24 . However, since $r \geqslant 3$, we get from (5) that $t^{r}+t^{r-1}+\cdots+t \geqslant 4^{3}+4^{2}+4>24 \geqslant n$, a contradiction. If $t=p$, then from (8) and (9) we obtain

$$
\begin{equation*}
S\left(p^{r-1}+p^{r-2}+\cdots+1\right)<S(t)=S(p)=p \tag{10}
\end{equation*}
$$

It implies that $p^{r-1}+p^{r-2}+\cdots+1 \mid(p-1)!$ and $p>2$. Therefore, we see from (5) that if n is a solution of (2), then $n=p\left(p^{r-1}+p^{r-2}+\cdots\right.$ $+1)$, where p is an odd prime satisfying $p^{r-1}+p^{r-2}+\cdots+1 \mid(p-$ $1)!$. Thus, the theorem is proved.

References

[1] C. Ashbacher, Unsolved problems, Smarandache Notions J., 9 (1998), 152-155.
[2] C. Dumitrescu and V. Seleacu, Some Notions and Questions in Number Theory, Erhus Univ. Press, Glendale, 1994.
[3] M. - H. Le, On the diophantine equation $S(n)=n$, Smarandache Notions J. , 10(1999), 142-143.

Department of Mathematics
Maoming Educational College
Maoming, Guangdong
P. R.China

