On the Functional Equation $S(n)^{2}+S(n)=k n$

Rongi Chen and Maohua Le

Abstract

For any positive integer a, let $S(a)$ denote the Smarandache function of a. In this paper, we prove that the equation $S(n)^{2}+S(n)=k n$ has infinitely many positive integer solutions for every positive integer k. Moreover, the size of the number of solutions does not depend on the parity of k.

Key Words: Smarandache function, functional equation, number of solutions.

1. Introduction

Let N be the set of positive integers. For any positive integer a, let
(1) $\mathrm{S}(\mathrm{a})=\min \{\mathrm{r}|\mathrm{r} \in N, \mathrm{a}| \mathrm{r}!\}$.

Then $S(a)$ is called the Smarandache function of a. Let k be a fixed positive integer. In this paper we deal with the equation
(2) $\mathrm{S}(\mathrm{n})^{2}+\mathrm{S}(\mathrm{n})=\mathrm{kn}, \mathrm{n} \in N$.

For any positive integer x, let $N(k, x)$ denote the number of solutions n with $n \leq x$, and let $N(k)$ denote the number of all solutions n of (2). A computer search showed that $N\left(1,10^{4}\right)=23, N\left(2,10^{4}\right)=33$, $N\left(3,10^{4}\right)=20, N\left(4,10^{4}\right)=24, N\left(5,10^{4}\right)=11$ and $N\left(6,10^{4}\right)=26$. In [1] Ashbacher posed the following questions:

Question 1: Is $\mathrm{N}(\mathrm{k})=\infty$ for $\mathrm{k}=1,2,3,4,5$ or 6 ?
Question 2: Is there a positive integer k for which $N(k)=0$?
Question 3: Is there a largest positive integer for which $\mathrm{N}(\mathrm{k})>0$?
Question 4: Is there more solutions n when k is even than when k is odd?

In this paper, we completely solve the above-mentioned questions. In fact, we prove a general result as follows:

Theorem: The positive integer n is a solution of (2) if and only one of the following conditions is satisfied.
(i) $\mathrm{n}=1$ for $\mathrm{k}=2$.
(ii) $\mathrm{n}=4$ for $\mathrm{k}=5$.
(iii) $\mathrm{n}=\mathrm{p}(\mathrm{p}+1)$ for $\mathrm{k}=1$, where p is a prime with $\mathrm{p}>3$.
(iv) $\mathrm{n}=\mathrm{p}(\mathrm{p}+1) / \mathrm{k}$ for $\mathrm{k}>1$, where p is a prime with $\mathrm{p} \equiv-1(\bmod \mathrm{k})$.

Corollary 1: As $x \rightarrow \infty$, we have

$$
N(k, x) \sim^{2} \sqrt{(1 x)} /(\varphi(k) \log (k x))
$$

Corollary 2: For any positive integers k_{1} and k_{2}, we have

```
\(\mathrm{N}\left(\mathrm{k}_{1}\right) \quad \varphi\left(\mathrm{k}_{2}\right)\)
\(\cdots=\cdots \cdots \sqrt{\left(k_{1} / k_{2}\right)}\)
\(N\left(k_{2}\right) \quad \varphi\left(k_{1}\right)\)
```

By our results, we observe that (2) has infinitely many solutions n for every positive integer k. Moreover, the size of $N(k, x)$ does not depend on the parity of k.

2. Preliminaries

Lemma 1: For any positive integers u and v, we have $S(u) \leq S(u v)$.
Proof: Let $a=S(u)$ and $b=S(u v)$. By (1), a and b are least positive integers satisfying u ! and $u v!b$! respectively. So we have $a \leq b$. The lemma is proved.

Lemma 2: For any positive integer u with $u>1$, there exists a prime factor d such that $d S(u)$.
Proof: Let $u=p_{1}{ }^{t} p_{2}{ }^{t 2} \ldots p_{k}{ }^{* k}$ be the prime factorization of u. Then, by [2], we have

$$
\mathrm{S}(\mathrm{u})=\max \left(\mathrm{S}\left(\mathrm{p}_{1}{ }^{\mathrm{t}}\right), \mathrm{S}\left(\mathrm{p}_{2}{ }^{\mathrm{t}}\right), \ldots, \mathrm{S}\left(\mathrm{p}_{\mathrm{k}}{ }^{\mathrm{k}}\right)\right)
$$

and $p_{i} \mid S\left(p_{i}^{i}\right)$ for $i=1,2,3, \ldots, k$. This proves the lemma.
Lemma 3: For any positive integer u, we have

$$
=u \text {, if } u=1,4 \text { or } p \text {, where } p \text { is a prime. }
$$

S(u)

$$
\leq u / 2, \text { otherwise. }
$$

Proof: See [4].
Lemma 4: For any coprime positive integers, u and v, we have $S(u v)=\max (S(u), S(v))$.
Proof: Let $a=S(u), b=S(v)$ and $c=S(u v)$. By (1), a, b and c are least positive integers satisfying $u \mid a$!, $v \mid b$! and $u v \mid c!$ respectively. This implies that $c \geq \max (a, b)$.
If $a \geq b$, then we have $u \mid a!$ and $v \mid a!$. Since $\operatorname{gcd}(u, v)=1$, we get $u v \mid a!$. So we have $a \geq c$. This implies that $c=a=\max (a, b)$. By the same method, we can prove that if $a \leq b$, then $c=b=\max (a, b)$. The lemma is proved.

Lemma 5: For any positive number x, let $\Pi(x)$ denote the number of primes p with $p \leq x$. As $x \rightarrow \infty$, we have $\Pi(x) \sim x^{\prime} \log x$.

Proof: See [3].

Lemma 6: Let a, b be integers satisfying $\mathrm{a}>1$ and $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$. For any positive number x , let $\Pi(\mathrm{x} ; \mathrm{a}, \mathrm{b})$ denote the number of primes p such that $p \leq x$ and $p \equiv b(\bmod a)$. As $x \rightarrow \infty$, we have $\Pi(x ; a, b) \sim x / \varphi(a) \log x$, where $\varphi(a)$ is the Euler function of a.

Proof: See [5].

3. Proofs

Proof of Theorem: Clearly, if n satisfy (i) or (ii), then it is a solution of (2). If n satisfy (iii), then $n=p(p+1)$, where p is a prime with $p>3$. Since $\operatorname{gcd}(p, p+1)=1$, by Lemma 4 , we get

$$
\begin{equation*}
S(n)=S(p(p+1))=\max (S(p), S(p+1)) \tag{5}
\end{equation*}
$$

Further, since $p+1 \geq 6$ is not a prime, by Lemma 3, we get $S(p+1) \leq(p+1) / 2<p$. Hence, we see from (5) that $S(n)=S(p)=p$. It implies that $S(n)^{2}+S(n)=p^{2}+p=n$ and n is a solution of (2) for $k=1$. By the same method, we can prove that if n satisfy the condition (iv), then it is a solution of (2) for $k>1$. Thus, the sufficient condition of our theorem is proved.

We now prove the necessary condition. Let n be a solution of (2), and let $t=S(n)$. We get from (2) that

$$
\begin{equation*}
\mathrm{t}(\mathrm{t}+1)=\mathrm{kn} \tag{6}
\end{equation*}
$$

If $n=1$ or 4 , then $t=1$ or 4 , and n is a solution of (2) for $k=2$ or 5 . From below, we may assume that $n \neq 1$ or 4 . Since $\operatorname{gcd}(t, t+1)=1$, by Lemma 4, we get from (6) that
(7) $\quad \mathrm{S}(\mathrm{kn})=\mathrm{S}(\mathrm{t}(\mathrm{t}+1))=\max (\mathrm{S}(\mathrm{t}), \mathrm{S}(\mathrm{t}+\mathrm{l}))$.

If $S(t) \leq S(t+1)$, then from (7) we get

$$
\begin{equation*}
S(k n)=S(t+1) \tag{8}
\end{equation*}
$$

By Lemma l, we have $S(k n) \geq S(n)=t$. Hence, by (8) we obtain

$$
\begin{equation*}
S(t+1) \geq t \tag{9}
\end{equation*}
$$

Since $n \neq 1$ or 4 , by Lemma 3, we see from (9) that either $t=3$ or $t=p-1$, where p is a prime. When $t=3$, we get $n=3$ or 6 . Then n satisfies the condition (iv). When $t=p-1$, we have $S(n)=p-1$ and

$$
\begin{equation*}
\mathrm{S}(\mathrm{kn})=\mathrm{p} \tag{10}
\end{equation*}
$$

by (8). Since p is a prime, by Lemma 2, we see from (10) that $p \mid k n$. If $p \mid k$, then k / p is a positive integer and $t=p-1=\mathrm{kn} / \mathrm{p}$ by (6). However, by Lemmas 1 and 3 , it implies that

$$
p-1>S(p-1)=S(k n / p) \geq S(n)=t=p-1, \text { a contradiction. }
$$

If $S(t)>S(t+1)$, then from (17) we get

$$
\begin{equation*}
S(k n)=S(t) \tag{11}
\end{equation*}
$$

Since $S(k n) \geq S(n)=t$, by Lemmas 1 and 3 , we see from (11) that $S(t)=t$. Since $n \neq 1$ or 4 , by Lemma 4, we get $t=p$, where p is a prime. Hence, by (6), we obtain

$$
\begin{equation*}
\mathrm{p}(\mathrm{p}+1)=\mathrm{kn} \tag{12}
\end{equation*}
$$

Further, since $S(n)=p$, by Lemma 2, we have $p \mid n$ and n / p is a positive integer. Then, by (12) we get $p \equiv-1(\bmod k)$. Furthermore, since $n \neq 4$, we get from (12) that $p>3$, for $k=1$. This implies that n satisfies the condition (iii) of (iv). Thus, the theorem is proved.

Proof of Corollaries 1 and 2. Let $\Pi(x)$ and $\Pi(x ; a, b)$ be defined as in Lemmas 5 and 6 respectively. By Theorem, we have

$$
\begin{array}{ll}
\Pi(v(x+1 / 4)-1 / 2)-2, & \text { if } k=1, \\
\Pi(v(2 x+1 / 4)-1 / 2), & \text { if } k=2,
\end{array}
$$

$\mathrm{N}(\mathrm{k}, \mathrm{x})=$

$$
\begin{array}{ll}
\Pi(\sqrt{ }(5 x+1 / 4)-1 / 2 ; 5,-1)+1, & \text { if } k=5, \\
\Pi(\sqrt{ }(k x+1 / 4)-1 / 2 ; k,-1), & \text { otherwise. }
\end{array}
$$

Therefore, by Lemmas 5 and 6, we get the corollaries immediately.

References

1. C. Ashbacher, "Unsolved Problems", Smarandache Notions J., 9(1998), 152-155.
2. C. Dumitrescu and V. Seleacu, Some Notions and Questions in Number Theory, Erhus Univ. Press, Glendale, 1994.
3. J. Hadamard, "Sur la distribution des zeros de la fonction $\zeta(s)$ et des consequences arithmetiques", Bull. Soc. Math. France, 24 (1896), 199-220.
4. M. H. Le, "On the Diophantine Equation $\mathrm{S}(\mathrm{n})=\mathrm{n}$ ", Smarandache Notions J., 10(1999), 142-143.
5. A. Page, "On the Number of Primes In An Arithmetic Progression", Proc. Math. Soc., (2), 39(1935), 116-141.

Rongi Chen
Department of Mathematics
Maoming Educational College
Maoming, Guangdong
P. R. China

Maohua Le
Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P. R. China

