Zhong Li and Maohua Le

Abstract

For any positive integer n, let $d(n), \varphi(n)$ and $Z(n)$ denote the divisor function, the Euler function and the pseudo-Smarandache function of n respectively. In this paper, we prove that the functional equation $Z(n)+\varphi(n)=d(n)$ has no solution n.

Key words: divisor function, Euler function, pseudo-Smarandache function.
Let N be the set of all positive integers. For any positive integer n , let

$$
\begin{equation*}
\mathrm{d}(\mathrm{n})=\sum_{\mathrm{d} \mid \mathrm{n}} 1 \tag{1}
\end{equation*}
$$

(2) $\varphi(n)=\sum 1$,

$$
1 \leq m \leq n
$$

$\operatorname{gcd}(m, n)=1$

$$
Z(n)=\min \left\{a|a \varepsilon N, n| \sum_{j=1}^{a}\right\}
$$

Then $d(n), \varphi(n)$ and $Z(n)$ are called the divisor function, the Euler function and the Pseudo-Smarandache function of n respectively. In [1], Ashbacher posed the following unsolved question:

Question: How many solutions n are there to the functional equation
(4) $\quad Z(n)+\varphi(n)=d(n), n \in N$?

In this paper, we completely solve the above-mentioned question as follows:
Theorem: The equation $Z(n)+\varphi(n)=d(n), n \in N$ has no solution.
Proof: Let n be a solution of (4). A computer search showed that (4) has no solution with $n \leq 10000$ (see [1]). So we have $n>10000$. Let

$$
\begin{equation*}
\mathrm{n}=\mathrm{p}_{1}^{\mathrm{r} 1} \mathrm{p}_{2}^{\mathrm{r} 2} \ldots \mathrm{p}_{\mathrm{k}}^{\mathrm{rk}} \tag{5}
\end{equation*}
$$

be the prime factorization of n. By [2, theorems 62 and 273], we see from (1), (2) and (5) that

$$
\begin{align*}
& d(n)=\left(r_{1}+1\right)\left(r_{2}+1\right) \ldots\left(r_{k}+1\right) \tag{6}\\
& \varphi(n)=n \prod_{i=1}\left(1-1 / p_{i}\right) \tag{7}
\end{align*}
$$

On the other hand, it is a well-known fact that

$$
\begin{equation*}
n \mid 1 / 2 Z(n)(Z(n)+1) \tag{8}
\end{equation*}
$$

(see [1]). From (8) we get

$$
Z(n) \geq \sqrt{ }(2 n+1 / 4-1 / 2) .
$$

Therefore, by (4), (5), (6), (7) and (9), we obtain

$$
\begin{equation*}
l \geq f(n)+g(n) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
f(n)=\prod_{i=1}^{k}\left(1-1 / p_{i}\right)\left(p^{\pi} /\left(r_{i}+1\right)\right), \tag{11}
\end{equation*}
$$

$$
g(n)=\sqrt{2} \prod_{i=1}^{k}\left(p_{i}^{\left.i 2 /\left(r_{i}+1\right)\right)-1 / 2} \prod_{i=1}^{k} 1 /\left(r_{i}+1\right)\right.
$$

Clearly, we see from (12) that $g(n)>0$ for any positive integer n with $n>1$. Hence, we get from (10) that

$$
\begin{equation*}
\mathrm{f}(\mathrm{n})<1 . \tag{13}
\end{equation*}
$$

If $k=1$, then $n=p_{1}{ }^{r 1}$ and $Z(n) \geq p_{1}{ }^{r 1}-1$ by (3). Hence, by (1) and (2), n is not a solution of (4). This implies that $\mathrm{k} \geq 2$.
If $k \geq 3$, then $p_{k} \geq 5$ and $f(n) \geq 1$, by (11). This contradicts with (13). So we have $k=2$. Then (11) can be written as

$$
\begin{equation*}
f(n)=\left(1-1 / p_{1}\right)\left(1-1 / p_{2}\right)\left(\left(p_{1}{ }^{r 1} p_{2}{ }^{r 2}\right) /\left(\left(r_{1}+1\right)\left(r_{2}+1\right)\right)\right) . \tag{14}
\end{equation*}
$$

If $p_{2}>3$, then from (14) we get $f(n) \geq 1$, a contradiction. Hence, we deduce that $p_{1}=2$ and $p_{2}=3$. Then, by (13) and (14), we obtain

$$
\begin{equation*}
f(n)=\left(2^{r_{1} 3^{2}}\right) /\left(3\left(r_{1}+1\right)\left(r_{2}+1\right)\right)<1 . \tag{15}
\end{equation*}
$$

From (15), we can calculate that $\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)=(1,1)$ or $(2,1)$. This implies that $\mathrm{n} \leq 12$, a contradiction. Thus, (4) has no solution n. The theorem is proved.

References

(1) C. Ashbacher, 'The Pseudo-Smarandache Function and the Classical Functions of Number Theory", Smarandache Notions J., 9(1995), 78-81.
(2) G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 1937.

