ON THE INTERSECTED SMARANDACHE PRODUCT SEQUENCES

Maohua Le

Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China

Abstract. In this paper we discuss a question concerning the intersected Smarandache product sequences.

Let $U=\{U_n\}_{n=1}$ be an infinite increasing sequence of positive integers. For any positive integer n, let

(1) $s_n = 1 + u_1 u_2 \dots u_n$.

8

Then the sequence $S(U) = \{s_n\}_{n=1}$ is called the Smarandache product sequence of U (see[1]). Further, if there exist infinitely many terms in U belonging to S(U), then S(U), is called intersected. In this paper we pose the following question:

Question. Wich of ordinary Smarandache product sequences are intersected?

 ∞

We nou give some obvious examples as follows:

 ∞

Example 1. If $U{=}\{n\}_{n=1}$, then $S\left(U\right)$ is intersected. In this case, we see from (1) that $s_n=u_{n+1}$ for any positive integer n.

Exemple 2. Let k be a positive integer with k>1. ∞ If U={kn}_{n=1}, then S(U) is non-intersected, since k/s_n for any positive integer n.

Exemple 3. Let k be a positive integer with k>1. If ∞ U={n^k}_{n=1}, then S(U) is non-intersected. In this case, we have s_n =1+1^k 2^k ...n^k =1+(n!)^k, which is not a k-th power.

Example 4. ∞ If U={n!}_{n=1}, then S(U) is non-intersected. In this case, we have $s_n = 1+1!2!...n!$, which is an odd integer if n>1. It implies that $u_n \in S(U)$ if and only if n=2.

Reference

1.F.Iacobescu, Smarandache partition type and other sequences, Bull.Pure appl.Sci.Sect.E 16(1997), No.2, 237-240.