Maonua Le
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China

Abstract. In this paper we discuss a question concerning the intersected Smarandache product sequences.
∞
Let $U=\left\{U_{n}\right\}_{n=:}$ be an infinite increasing sequence of positive integers. Eor any positive integer n, let

$$
\begin{equation*}
S_{n}=1+u_{i} u_{2} \quad \ldots u_{n} . \tag{1}
\end{equation*}
$$

∞
Then the the sequence $S(U)=\left\{S_{n}\right\}_{n=:}$ is called the Smarandache product sequence of U (see[1]). Further, if there exist infinitely
many terms in U belonging to $S(U)$, tinen $S(U)$, is called intersected. In this paper we pose the following question:

Question. Wich of ordinary Smarandache product sequences are intersected?

We nou give some obvious examples as follows:
∞
Example 1. If $U=\{n\}_{n=1}$, then $S(U)$ is intersected. In this case, we see from (1) that $s_{2}=u_{n:-}$ for any positive integer n.

Exemple 2. Let k be a positive integer with $k>1$.
∞
If $U=\{k n\}_{\text {..: }}$, then $S(U)$ is non-intersected, since $k \nmid S_{\text {. }}$ for any positive integer n.

Exemple 3. Let k be a positive integer with $k>1$. If $U=\left\{n^{*}\right\}$, then $S(U)$ is non-intersected. In this case, we have $s_{:}=1+1^{k} 2^{k} \ldots n^{k}=1+(n!)^{k}$, which is not a k-th power.

Example 4. ∞
If $U=\{n!\}=:$, then $S(U)$ is non-intersected.
In this case, we have $s_{n}=1+1!2!. . . n!$, which is an odd integer if n>l. It implies that $u_{n} \in S(U)$ if and only if $n=2$.

Reference

1. E. Iacobescu, Smarandache partition type and other sequences, Bull. Pure appl.Sci.Sect.E 16(1997), No.2, 237-240.
