On The Irrationality Of Certain Alternative Smarandache Series

Sàndor József

+160 Fontui No. 79. R-Jud Harghita. ROMLDTA.

1. Let $S(n)$ be the Smarandache function. In paper [1] it is proved the irrationality of $\sum_{n=1}^{\infty} \frac{S(n)}{n!}$. We note here that this result is contained in the following more general theorem (see e.g. [2]).

Theorem 1 Let $\left(x_{n}\right)$ be a sequence of natural numbers with the properties: (1) there exists $n_{0} \in N^{*}$ such that $x_{n} \leq n$ for all $n \geq n_{0}$; (2) $x_{n}<n-1$ for an infinity of n; (3) $x_{m}>0$ for infinitely many m. Then the series $\sum_{n=1}^{\infty} \frac{x_{n}}{n!}$ is irrational.

By letting $x_{n}=S(n)$, it is well known that $S(n) \leq n$ for $n \geq n_{0} \equiv 1$, and $S(n) \leq \frac{2}{3} n$ for $n>4$, composite. Clearly, $\frac{2}{3} n<n-1$ for $n>3$. Thus the irrationality of the second constant of Smarandache ([1]) is contained in the above result.
2. We now prove a result on the irrationality of the alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{S(n)}{n!}$. We can formulate our result more generally, as follows:

Theorem 2 Let $\left(a_{n}\right),\left(b_{n}\right)$ be two sequences of positive integers having the following properties: (1) $n \mid a_{1} a_{2} \ldots a_{n}$ for all $n \geq n_{0}\left(n_{0} \in N^{*}\right)$; (2) $\frac{b_{n+1}}{a_{n+1}}<b_{n} \leq a_{n}$ for $n \geq n_{0}$; (3) $b_{m}<a_{m}$, where $m \geq n_{0}$ is composite. Then the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{b_{n}}{a_{1} a_{2} \ldots a_{n}}$ is convergent and has an irrational value.

Proof: It is sufficient to consider the series $\sum_{n=n_{1}}^{\infty}(-1)^{n-1} \frac{b_{n}}{a_{1} a_{2} \ldots a_{n}}$. The proof is very similar (in some aspect) to Theorem 2 in our paper [3]. Let $r_{r_{1}}=\frac{b_{n}}{a_{1} a_{2} \ldots u_{n}}\left(n \geq n_{0}\right)$.

Then $x_{n} \leq \frac{1}{a_{1} \ldots a_{n-1}} \rightarrow 0$ since (1) gives $a_{1} \ldots a_{k} \geq k \rightarrow \infty$ (as $k \rightarrow \infty$). On the other hand, $x_{n+1}<x_{n}$ by the first part of (2). Thus Leibnitz criteria assures the convergence of the series. Let us now assume, on the contrary, that the series has a rational value, say $\frac{a}{k}$. First we note that we can choose k in such a manner that $k+1$ is composite, and $k>n_{0}$. Indeed, if $k+1=1$ (prime), then $\frac{a}{p-1}=\frac{c a}{c(p-1)}$. Let $c=2 a r^{2}+2 r$, where r is arbitrary. Then $2 a\left(2 a r^{2}+2 r\right)+1=(2 a r+1)^{2}$, which is composite. Since r is arbitrary, we can assume $k>n_{0}$. By multiplying the sum with $a_{1} a_{2} \ldots a_{k}$, we can write:

$$
a \frac{a_{1} \ldots a_{k}}{k}=\sum_{n=n_{0}}^{k}(-1)^{n-1} \frac{a_{1} \ldots a_{k}}{a_{1} \ldots a_{n}} \cdot b_{n}+(-1)^{k}\left(\frac{b_{k+1}}{a_{k+1}}-\frac{b_{k+2}}{a_{k+1} a_{k+2}}+\ldots\right) .
$$

The alternating series on the right side is convergent and must have an integer value. But it is well known its value lies between $\frac{b_{k+1}}{a_{k+1}}-\frac{b_{k+2}}{a_{k+1} a_{k+2}}$ and $\frac{b_{k+1}}{a_{k+1}}$. Here $\frac{b_{k+1}}{a_{k+1}}-\frac{b_{k+2}}{a_{k+1} a_{k+2}}>0$ on base of (3). On the other hand $\frac{b_{k+1}}{a_{k+1}}<1$, since $k+1$ is a composite number. Since an integer number has a value between 0 and 1, we have obtained a contradiction, finishing the proof of the theorem.

Corollary $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{S(n)}{n!}$ is irrational.
Proof: Let $a_{n}=n$. Then condition (1) of Theorem 2 is obvious for all n; (2) is valid with $n_{0}=2$, since $S(n) \leq n$ and $S(n+1) \leq n+1=(n+1) \cdot 1<(n+1) S(n)$ for $n \geq 2$. For composite m we have $S(m) \leq \frac{2}{3} m<m$, thus condition (3) is verified, too.

References:

1. I. Cojocanu and S. Cojocaru The Second Constant Of Smarandache, Smarandache Notions Journal, vol. 7, no. 1-2-3 (1996), 119-120
2. J. Sàndor Irrational Numbers, Caiete metodico-ştiințifice, no. 44, Universitatea din Timişoara, 1987, p. 1-18 (see p. 5)
3. J. Sàndor On The Irrationality Of Some Alternating Series. Studia Univ BabeşBolay, Mathematica, XXXIII, 4, 1988, p. 7-12
