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ABSTRACT. For any positive integer n, the Smarandache double factorial function 
df(n) is defined to be the smallest integer such that df(n)!! is a multiple ofn. In this 
paper, we study the hybrid mean value of the Smarandache double factorial function 
and the Mangoldt functIon, and gIve a sharp asymptotic formula. 

1. INTRODUCTION AND RESULTS 

For any positive integer n, the double factorial function df(n) is 
defined to be the integer such that d f (n)!~ is a factorial For 
exarnple, df (1) 1, df (2) 2, df (3) = :3, df (4) :-c 4, df (5) :-: 5, df (6) 6, 
df (7) 7, df (8) :-: 4, .... Professor F. Snlarandache [1] asks us to study the 
sequence. About this problem, we know very little. There are many papers on the 
Smarandache double factorial function. For example, some arithrnetic properties 
of this sequence are studied by C.Dulnitrescu, V. Seleacu [2] and Felice Russo [3], 
[4]. The problem is interesting it can us to calculate the Snlarandache 
function. 

In this paper, we study the hybrid nlean value of the Srnarandache double fac-
torial function and Mangoldt function, and give a sharp asymptotic formula. 
That is, we shall prove the following theorems. , 

Theorem 1. If x ~ 2) then for any positive integer k we have 

where 

( ) 
_ { logp, Al n .. 

0, 

if n is a prime p ; 

otherwise, 

and am ("!1 :-: 1, 2, ... ,k - 1) are computable constants. 
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Theorem 2. If x >. 2, then faT' any pos'it'ive 'integer k we ha'ue 

L A(n)c1f (n) 
( 

k-l ) 
,2 ~ ""'.~ x + L 'Tn 2 log' X 

nS:;x m,:-l 

wheTe A( n) is the }vI angoldt function. 

2. SOME LEMMAS 

the proofs of the theorems, we need the following lemma. 

Lernma 1. For any pos'itive 'intege'r OJ if p ~ (2a 1) we have 

Proof. This is Theorem 5 of [4 J. 

3. PROOFS OF THE THEOREMS 

In this section, we complete the proofs of the theorems. Let 

a(n) :-: {
I, 

0, 

if n is prime; 

otherwise, 

then for any positive integer k we have 

L a(n) 7r(x) 
nS:;x 

( 

k-1 ) ( ) x m! 0 x 
logx 1 + fl logm x + logk+l x . 

By Abel's identity we have 

L a( n)n log n ~ 7r(x) . x log x - j~X 7r(t) (log t + 1) dt 
nS:;x 

:-: x 2 1 + L 1 rr:;. + O( -;-) ( 

k-l ) 2 

m:-:l og X log x 

- t+--+t"'--+--~ -"-l
x 

( t k-l m! t k-l m! I 0 (t (logt + 1))) dt 
2 log t ' ;;:1 logm t log t :;;;:1 t I logk+l t 

:-: X
2 (~ + y: ~) + 0 (~) 

2 m=l logm x logk X ' 

where am(m :-: 1,2,' ., ,k 1) are computable constants. Therefore 
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So we have 

+0(-). 109'~ X 

proves Theorem 1. 
It is obvious df(JP) ::; (2a - l)p. FroIn Lernma 1 we have 

n<x 

Note that 

p"<x 
p«2a-l) 

'L (2a - l)plogp - 'L plogp 'L P logp(2o: 1) 'L plogp 
p"'<x 

and 

so we have 

p"'<x 
p«2a-l) 

'Lp - 1) « 'L ax2/cr.log xl/a « X log3 x 

2:(.cr.::; 

'L aplogp 
p«2a-l) 

( 
x2 ) +0 --k- . 

log x 

Tllls completes the proof of Theorern 2. 
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