# On the numerical function $S_{\min }^{-1}$ 

Vasile Seleacu<br>Department of Mathematics, University of Craiova<br>13, Al. I. Cuza st., Craiova 1100, Romania

In [1] on defines $S_{\min }^{-1}: \mathrm{N} \backslash\{1\} \mapsto \mathrm{N}, S_{\min }^{-1}(x)=\min \left\{S^{-1}(x)\right\}$, where $S^{-1}(x)=\{a \in \mathrm{~N} \mid S(a)=x\}$, and $S$ is the Smarandache function.
For example $S^{-1}(6)=\left\{2^{4}, 2^{4} \cdot 3,2^{4} \cdot 3^{2}, 3^{2}, 3^{2} \cdot 2,3^{2} \cdot 2^{2}, 3^{2} \cdot 2^{3}, 2^{4} \cdot 3 \cdot 5\right.$, $\left.2^{3} \cdot 3^{2} \cdot 5,2^{4} \cdot 3^{2} \cdot 5,3^{2} \cdot 5,2^{4} \cdot 5,3^{2} \cdot 5,3^{2} \cdot 2^{4}\right\}$ and $S_{\min }^{-1}(6)=3^{2}$. If $S(x)=n$ one knows that $\operatorname{card}\left(S^{-1}(n)\right)=d(n!)-d((n-1)!)$ where $d$ is the number of divisors of $n$.
If $x$ is a prime number, then $\operatorname{card}\left(S^{-1}(n)\right)=d((n-1)!)$.
We give below a table of the values of $S_{\min }^{-1}(n)$ :

| $n$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 12 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $S_{\min }^{-1}(n)$ | 2 | 3 | 4 | 5 | $3^{2}$ | 7 | $2^{5}$ | $3^{5}$ | $5^{3}$ |
| $n$ | 16 | 21 | 24 | 27 | 36 | 40 | 52 | 56 | 60 |
| $S_{\min }^{-1}(n)$ | $2^{12}$ | $7^{3}$ | $3^{10}$ | $3^{11}$ | $3^{16}$ | $5^{9}$ | $13^{4}$ | $7^{8}$ | $5^{4}$ |

One knows [2] that if $p<q$ are two prime numbers, and $n>1$ is a natural number such that $p \cdot q \mid n$, then $p^{\phi^{(n)}}>q^{q_{q}(n)}$, where $l_{p}(n)$ is the exponent of $p$ in the prime factors decomposition of $n$ !.
According to the above properties we can deduce the calculus formula for function $S_{\text {mia }}^{-1}$ :

$$
\begin{equation*}
S_{\min }^{-1}\left(n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{\tau}^{\alpha_{r}}\right)=p_{r}^{l_{\tau}(n)-\alpha_{r}+1} \tag{1}
\end{equation*}
$$

where $p_{1}<p_{2}<\cdots<p_{r}$ are the prime numbers in the canonical decomposition of the number $n$.
We list a set of properties of the function $S_{\min }^{-1}$, which result directly from the definition and from formula (1):

1. $S_{\min }^{-1}(p)=p$ if $p$ is a prime number.
2. $S_{\min }^{-1}(p \cdot q)=q^{p}$ if $p$ and $q$ are prime numbers and $p<q$.
3. $S\left(S_{\min }^{-1}(x)\right)=x$.
4. $\quad S_{\min }^{-1}\left(q^{p}\right)=p \cdot q$ if $p$ and $q$ are prime numbers and $p<q$.
5. $S_{\min }^{-1}(x)<S_{\min }^{-1}(y)$ if $x$ and $y$ contain as the greatest prime factor $p_{\tau}$ and $x<y$.
6. The equation $S_{\min }^{-1}(x)=S_{\min }^{-1}(x+1)$ has not solutions.
7. $S_{\min }^{-1}(S(x))$ is generally not equal to $S(x)$.
8. $\Lambda\left(S_{\min }^{-1}(x)\right)=\log p_{\tau}$, where $\Lambda$ is the Mangoltd function.

It is open the problem to find other properties of the function $S_{\min }^{-1}$.

## References

[1] Smarandache Function Journal, vol. 1, 1993.
[2] Florian Luca, An inequality between prime powers dividing n! (To appear in Smarandache Function Journal, vol. 9, 1998.)
[3] Ion Bălăcenoiu, Remarkable Inequalities, Proceedings of the first International Conference on Smarandache Type Notions in Number Theory, Craiova, Romania, 1997.

