On the numerical function S_{\min}^{-1}

Vasile Seleacu

Department of Mathematics, University of Craiova 13, Al. I. Cuza st., Craiova 1100, Romania

In [1] on defines $S_{\min}^{-1} : \mathbb{N} \setminus \{1\} \mapsto \mathbb{N}$, $S_{\min}^{-1}(x) = \min\{S^{-1}(x)\}$, where $S^{-1}(x) = \{a \in \mathbb{N} \mid S(a) = x\}$, and S is the Smarandache function. For example $S^{-1}(6) = \{2^4, 2^4 \cdot 3, 2^4 \cdot 3^2, 3^2, 3^2 \cdot 2, 3^2 \cdot 2^2, 3^2 \cdot 2^3, 2^4 \cdot 3 \cdot 5, 2^3 \cdot 3^2 \cdot 5, 2^4 \cdot 3^2 \cdot 5, 3^2 \cdot 2^4\}$ and $S_{\min}^{-1}(6) = 3^2$. If S(x) = n one knows that $card(S^{-1}(n)) = d(n!) - d((n-1)!)$ where d is the number of divisors of n.

If x is a prime number, then card $(S^{-1}(n)) = d((n-1)!)$. We give below a table of the values of $S^{-1}_{\min}(n)$:

n	2	3	4	5	6	7	8	12	15
$S_{\min}^{-1}(n)$	2	3	4	5	3 ²	7	2 ⁵	35	5 ³
n	16	21	24	27	36	40	52	56	60
$S_{\min}^{-1}(n)$	2^{12}	7^{3}	310	3^{11}	3 ¹⁶	5 ⁹	13^{4}	7 ⁸	5 ⁴

One knows [2] that if p < q are two prime numbers, and n > 1 is a natural number such that $p \cdot q \mid n$, then $p^{l_p(n)} > q^{l_q(n)}$, where $l_p(n)$ is the exponent of p in the prime factors decomposition of n!.

According to the above properties we can deduce the calculus formula for function S_{\min}^{-1} :

$$S_{\min}^{-1} \left(n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} \right) = p_r^{l_{p_r}(n) - \alpha_r + 1} \tag{1}$$

where $p_1 < p_2 < \cdots < p_r$ are the prime numbers in the canonical decomposition of the number n.

We list a set of properties of the function S_{\min}^{-1} , which result directly from the definition and from formula (1):

1. $S_{\min}^{-1}(p) = p$ if p is a prime number.

- 2. $S_{\min}^{-1}(p \cdot q) = q^p$ if p and q are prime numbers and p < q.
- 3. $S\left(S_{\min}^{-1}(x)\right) = x$.
- 4. $S_{\min}^{-1}(q^p) = p \cdot q$ if p and q are prime numbers and p < q.
- 5. $S_{\min}^{-1}(x) < S_{\min}^{-1}(y)$ if x and y contain as the greatest prime factor p_r and x < y.
- 6. The equation $S_{\min}^{-1}(x) = S_{\min}^{-1}(x+1)$ has not solutions.
- 7. $S_{\min}^{-1}(S(x))$ is generally not equal to S(x).
- 8. $\Lambda\left(S_{\min}^{-1}(x)\right) = \log p_{\tau}$, where Λ is the Mangoltd function.

It is open the problem to find other properties of the function S_{\min}^{-1} .

References

- [1] Smarandache Function Journal, vol. 1, 1993.
- Florian Luca, An inequality between prime powers dividing n! (To appear in Smarandache Function Journal, vol. 9, 1998.)
- [3] Ion Bălăcenoiu, Remarkable Inequalities, Proceedings of the first International Conference on Smarandache Type Notions in Number Theory, Craiova, Romania, 1997.