ON THE PRIMITIVE NUMBERS OF POWER P AND ITS ASYMPTOTIC PROPERTY*

ZHANG WENPENG AND LIU DUANSEN

Research Center for Basic Science, Xi'an Jiaotong University Xi'an, Shaanxi, P.R.China Institute of Mathematics, Shangluo Teacher's College Shangzhou, Shaanxi, P.R.China

ABSTRACT. Let p be a prime, n be any positive integer, $S_p(n)$ denotes the smallest integer such that $S_p(n)!$ is divisible by p^n . In this paper, we study the asymptotic properties of $S_p(n)$, and give an interesting asymptotic formula for it.

1. INTRODUCTION

Let p be a prime, n be any positive integer, $S_p(n)$ denotes the smallest integer such that $S_p(n)!$ is divisible by p^n . For example, $S_3(1) = 3$, $S_3(2) = 6$, $S_3(3) = S_3(4) = 9$, \cdots . In problem 49 of book [1], Professor F.Smarandache ask us to study the properties of the sequence $\{S_p(n)\}$. About this problem, it appears that no one had studied it yet, at least, we have not seen such a paper before. The problem is interesting because it can help us to calculate the Smarandache function. In this paper, we use the elementary methods to study the asymptotic properties of $S_p(n)$, and give an interesting asymptotic formula for it. That is, we shall prove the following:

Theorem. For any fixed prime p and any positive integer n, we have the asymptotic formula

$$S_p(n) = (p-1)n + O\left(\frac{p}{\ln p} \cdot \ln n\right).$$

From this theorem we may immediately deduce the following:

Corollary. For any positive integer n, we have the asymptotic formulas

- a) $S_2(n) = n + O(\ln n);$
- b) $S_3(n) = 2n + O(\ln n)$.

Key words and phrases. F.Smarandache problem; Primitive numbers; Asymptotic formula. * This work is supported by the N.S.F. and the P.S.F. of P.R.China.

2. PROOF OF THE THEOREM

In this section, we complete the proof of the Theorem. First for any fixed prime p and any positive integer n, we let a(n,p) denote the sum of the base p digits of n. That is, if $n = a_1 p^{\alpha_1} + a_2 p^{\alpha_2} + \cdots + a_s p^{\alpha_s}$ with $\alpha_s > \alpha_{s-1} > \cdots > \alpha_1 \ge 0$, where $1 \le a_i \le p-1, i = 1, 2, \cdots, s$, then $a(n,p) = \sum_{i=1}^s a_i$, and for this number theoretic function, we have the following two simple Lemmas:

Lemma 1. For any integer $n \ge 1$, we have the identity

$$\alpha_p(n) \equiv \alpha(n) \equiv \sum_{i=1}^{+\infty} \left[\frac{n}{p^i} \right] = \frac{1}{p-1} \left(n - a(n,p) \right),$$

where [x] denotes the greatest integer not exceeding x.

Proof. From the properties of [x] we know that

$$\begin{bmatrix} \frac{n}{p^i} \end{bmatrix} = \begin{bmatrix} \frac{a_1 p^{\alpha_1} + a_2 p^{\alpha_2} + \dots + a_s p^{\alpha_s}}{p^i} \end{bmatrix}$$
$$= \begin{cases} \sum_{j=k}^s a_j p^{\alpha_j - i}, & \text{if } \alpha_{k-1} < i \le \alpha_k \\ 0, & \text{if } i > \alpha_s. \end{cases}$$

So from this formula we have

$$\begin{aligned} \alpha(n) &\equiv \sum_{i=1}^{+\infty} \left[\frac{n}{p^i} \right] = \sum_{i=1}^{+\infty} \left[\frac{a_1 p^{\alpha_1} + a_2 p^{\alpha_2} + \dots + a_s p^{\alpha_s}}{p^i} \right] \\ &= \sum_{j=1}^{s} \sum_{k=1}^{\alpha_j} a_j p^{\alpha_j - k} = \sum_{j=1}^{s} a_j \left(1 + p + p^2 + \dots + p^{\alpha_j - 1} \right) \\ &= \sum_{j=1}^{s} a_j \cdot \frac{p^{\alpha_j} - 1}{p - 1} = \frac{1}{p - 1} \sum_{j=1}^{s} \left(a_j p^{\alpha_j} - a_j \right) \\ &= \frac{1}{p - 1} \left(n - a(n, p) \right). \end{aligned}$$

This completes the proof of Lemma 1.

Lemma 2. For any positive integer n with p|n, we have the estimate

$$a(n,p) \leq \frac{p}{\ln p} \ln n.$$

Proof. Let $n = a_1 p^{\alpha_1} + a_2 p^{\alpha_2} + \dots + a_s p^{\alpha_s}$ with $\alpha_s > \alpha_{s-1} > \dots > \alpha_1 \ge 1$, where $1 \le a_i \le p-1, i = 1, 2, \dots, s$. Then from the definition of a(n, p) we have

(1)
$$a(n,p) = \sum_{i=1}^{s} a_i \le \sum_{i=1}^{s} (p-1) = (p-1)s.$$

On the other hand, using the mathematical induction we can easily get the inequality

$$n = a_1 p^{\alpha_1} + a_2 p^{\alpha_2} + \dots + a_s p^{\alpha_s} \ge a_s p^s,$$

or

(2)
$$s \leq \frac{\ln(n/a_s)}{\ln p} \leq \frac{\ln n}{\ln p}.$$

Combining (1) and (2) we immediately get the estimate

$$a(n,p) \leq \frac{p}{\ln p} \ln n.$$

This proves the Lemma 2.

Now we use Lemma 1 and Lemma 2 to complete the proof of the Theorem. For any fixed prime p and any positive integer n, let $S_p(n) = k = a_1 \cdot p^{\alpha_1} + a_2 \cdot p^{\alpha_2} + a_3 \cdot p^{\alpha_3} + a_4 \cdot p^{\alpha_4} + a_5 \cdot p^{\alpha_4} + a_5 \cdot p^{\alpha_4} + a_5 \cdot p^{\alpha_4} + a_5 \cdot p^{\alpha_5} + a_5 \cdot p^{\alpha_5}$ $\cdots + a_s \cdot p^{\alpha_s}$ with $\alpha_s > \alpha_{s-1} > \cdots > \alpha_1 \ge 0$ under the base p. Then from the definition of $S_p(n)$ we know that $p^n | k!$ and $p^n \nmid (k-1)!$, so that $\alpha_1 \geq 1$. Note that the factorization of k! into prime powers is

$$k! = \prod_{q \le k} q^{\alpha_q(k)},$$

where $\prod_{i=1}^{k}$ denotes the product over all prime $\leq k$, and $\alpha_q(k) = \sum_{i=1}^{+\infty} \left[\frac{k}{q^i}\right]$. From

Lemma 1 we immediately get the inequality

$$\alpha_p(k) - \alpha_1 < n \le \alpha_p(k)$$

or

$$\frac{1}{p-1}(k-a(k,p)) - \alpha_1 < n \le \frac{1}{p-1}(k-a(k,p)).$$

i.e.

$$(p-1)n + a(k,p) \le k \le (p-1)n + a(k,p) + (p-1)(\alpha_1 - 1).$$

Combining this inequality and Lemma 2 we obtain the asymptotic formula

$$k = (p-1)n + O\left(\frac{p}{\ln p}\ln k\right) = (p-1)n + O\left(\frac{p}{\ln p}\ln n\right).$$

This completes the proof of the Theorem.

References

- 1. F. Smarandache, Only problems, not Solutions, Xiquan Publ. House, Chicago, 1993, pp. 41-42.
- 2. Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
- 3. R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1981.
- 4. "Smarandache Sequences" at http://www.gallup.unm.edu/~smarandache/snaqint.txt.
- 5. "Smarandache Sequences" at http://www.gallup.unm.edu/~smarandache/snaqint2.txt.
- 6. "Smarandache Sequences" at http://www.gallup.unm.edu/~smarandache/snaqint3.txt.