ON THE PRIMITIVE NUMBERS OF POWER P AND ITS ASYMPTOTIC PROPERTY*

Zhang Wenpeng and Liu Duansen
Research Center for Basic Science, Xi'an Jiaotong University Xi'an, Shaanxi, P.R.China
Institute of Mathematics, Shangluo Teacher's College
Shangzhou, Shaanxi, P.R.China

Abstract

Let p be a prime, n be any positive integer, $S_{p}(n)$ denotes the smallest integer such that $S_{p}(n)$! is divisible by p^{n}. In this paper, we study the asymptotic properties of $S_{p}(n)$, and give an interesting asymptotic formula for it .

1. Introduction

Let p be a prime, n be any positive integer, $S_{p}(n)$ denotes the smallest integer such that $S_{p}(n)$! is divisible by p^{n}. For example, $S_{3}(1)=3, S_{3}(2)=6, S_{3}(3)=$ $S_{3}(4)=9, \cdots \cdots$. In problem 49 of book [1], Professor F.Smarandache ask us to study the properties of the sequence $\left\{S_{p}(n)\right\}$. About this problem, it appears that no one had studied it yet, at least, we have not seen such a paper before. The problem is interesting because it can help us to calculate the Smarandache function. In this paper, we use the elementary methods to study the asymptotic properties of $S_{p}(n)$, and give an interesting asymptotic formula for it. That is, we shall prove the following:

Theorem. For any fixed prime p and any positive integer n, we have the asymptotic formula

$$
S_{p}(n)=(p-1) n+O\left(\frac{p}{\ln p} \cdot \ln n\right)
$$

From this theorem we may immediately deduce the following:
Corollary. For any positive integer n, we have the asymptotic formulas

$$
\begin{aligned}
& \text { a) } \quad S_{2}(n j=n+O(\ln n) \\
& \text { b) } \quad S_{3}(n)=2 n+O(\ln n) .
\end{aligned}
$$

[^0]
2. Proof of the Theorem

In this section, we complete the proof of the Theorem. First for any fixed prime p and any positive integer n, we let $a(n, p)$ denote the sum of the base p digits of n. That is, if $n=a_{1} p^{\alpha_{1}}+a_{2} p^{\alpha_{2}}+\cdots+a_{s} p^{\alpha_{s}}$ with $\alpha_{s}>\alpha_{s-1}>\cdots>\alpha_{1} \geq 0$, where $1 \leq a_{i} \leq p-1, i=1,2, \cdots, s$, then $a(n, p)=\sum_{i=1}^{s} a_{i}$, and for this number theoretic function, we have the following two simple Lemmas:
Lemma 1. For any integer $n \geq 1$, we have the identity

$$
\alpha_{p}(n) \equiv \alpha(n) \equiv \sum_{i=1}^{+\infty}\left[\frac{n}{p^{i}}\right]=\frac{1}{p-1}(n-a(n, p))
$$

where $[x]$ denotes the greatest integer not exceeding x.
Proof. From the properties of $[x]$ we know that

$$
\begin{aligned}
{\left[\frac{n}{p^{i}}\right] } & =\left[\frac{a_{1} p^{\alpha_{1}}+a_{2} p^{\alpha_{2}}+\cdots+a_{s} p^{\alpha_{s}}}{p^{i}}\right] \\
& = \begin{cases}\sum_{j=k}^{s} a_{j} p^{\alpha_{j}-i}, & \text { if } \alpha_{k-1}<i \leq \alpha_{k} \\
0, & \text { if } i>\alpha_{s} .\end{cases}
\end{aligned}
$$

So from this formula we have

$$
\begin{aligned}
\alpha(n) & \equiv \sum_{i=1}^{+\infty}\left[\frac{n}{p^{i}}\right]=\sum_{i=1}^{+\infty}\left[\frac{a_{1} p^{\alpha_{1}}+a_{2} p^{\alpha_{2}}+\cdots+a_{s} p^{\alpha_{s}}}{p^{i}}\right] \\
& =\sum_{j=1}^{s} \sum_{k=1}^{\alpha_{j}} a_{j} p^{\alpha_{j}-k}=\sum_{j=1}^{s} a_{j}\left(1+p+p^{2}+\cdots+p^{\alpha_{j}-1}\right) \\
& =\sum_{j=1}^{s} a_{j} \cdot \frac{p^{\alpha_{j}}-1}{p-1}=\frac{1}{p-1} \sum_{j=1}^{s}\left(a_{j} p^{\alpha_{j}}-a_{j}\right) \\
& =\frac{1}{p-1}(n-a(n, p)) .
\end{aligned}
$$

This completes the proof of Lemma 1.
Lemma 2. For any positive integer n with $p \mid n$, we have the estimate

$$
a(n, p) \leq \frac{p}{\ln p} \ln n
$$

Proof. Let $n=a_{1} p^{\alpha_{1}}+a_{2} p^{\alpha_{2}}+\cdots+a_{s} p^{\alpha_{s}}$ with $\alpha_{s}>\alpha_{s-1}>\cdots>\alpha_{1} \geq 1$, where $1 \leq a_{i} \leq p-1, i=1,2, \cdots, s$. Then from the definition of $a(n, p)$ we have

$$
\begin{equation*}
a(n, p)=\sum_{i=1}^{s} a_{i} \leq \sum_{i=1}^{s}(p-1)=(p-1) s \tag{1}
\end{equation*}
$$

On the other hand, using the mathematical induction we can easily get the inequality

$$
n=a_{1} p^{\alpha_{1}}+a_{2} p^{\alpha_{2}}+\cdots+a_{s} p^{\alpha_{s}} \geq a_{s} p^{s}
$$

or

$$
\begin{equation*}
s \leq \frac{\ln \left(n / a_{s}\right)}{\ln p} \leq \frac{\ln n}{\ln p} . \tag{2}
\end{equation*}
$$

Combining (1) and (2) we immediately get the estimate

$$
a(n, p) \leq \frac{p}{\ln p} \ln n
$$

This proves the Lemma 2.
Now we use Lemma 1 and Lemma 2 to complete the proof of the Theorem. For any fixed prime p and any positive integer n, let $S_{p}(n)=k=a_{1} \cdot p^{\alpha_{1}}+a_{2} \cdot p^{\alpha_{2}}+$ $\cdots+a_{s} \cdot p^{\alpha_{s}}$ with $\alpha_{s}>\alpha_{s-1}>\cdots>\alpha_{1} \geq 0$ under the base p. Then from the definition of $S_{p}(n)$ we know that $p^{n} \mid k!$ and $p^{n} \nmid(k-1)$!, so that $\alpha_{1} \geq 1$. Note that the factorization of k ! into prime powers is

$$
k!=\prod_{q \leq k} q^{\alpha_{q}(k)}
$$

where $\prod_{q \leq k}$ denotes the product over all prime $\leq k$, and $\alpha_{q}(k)=\sum_{i=1}^{+\infty}\left[\frac{k}{q^{i}}\right]$. From Lemma 1 we immediately get the inequality

$$
\alpha_{p}(k)-\alpha_{1}<n \leq \alpha_{p}(k)
$$

or

$$
\frac{1}{p-1}(k-a(k, p))-\alpha_{1}<n \leq \frac{1}{p-1}(k-a(k, p)) .
$$

i.e.

$$
(p-1) n+a(k, p) \leq k \leq(p-1) n+a(k, p)+(p-1)\left(\alpha_{1}-1\right) .
$$

Combining this inequality and Lemma 2 we obtain the asymptotic formula

$$
k=(p-1) n+O\left(\frac{p}{\ln p} \ln k\right)=(p-1) n+O\left(\frac{p}{\ln p} \ln n\right) .
$$

This completes the proof of the Theorem.

References

1. F. Smarandache, Only problems, not Solutions, Xiquan Publ. House, Chicago, 1993, pp. 41-42.
2. Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
3. R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1981.
4. "Smarandache Sequences" at http://www.gallup.unm.edu/"smarandache/snaqint.txt.
5. "Smarandache Sequences" at http://www.gallup.unm.edu/" smarandache/snaqint2.txt.
6. "Smarandache Sequences" at http://www.gallup.unm.edu/" smarandache/snaqint3.txt.

[^0]: Key words and phrases. F.Smarandache problem; Prinitive numbers; Asymptotic formula. * This work is supported by the N.S.F. and the P.S.F. of P.R.C.hina.

