On the Pseudo-Smarandache Function

J. Sándor

Babes-Bolyai University, 3400 Cluj-Napoca, Romania
Kashihara[2] defined the Pseudo-Smarandache function Z by
$Z(n)=\min \left\{m \geq 1: n \left\lvert\, \frac{m(m+1)}{2}\right.\right\}$

Properties of this function have been studied in [1], [2] etc.

1. By answering a question by C. Ashbacher, Maohua Le proved that $S(Z(n))-Z(S(n))$ changes signs infinitely often. Put

$$
\Delta_{\mathrm{s}, \mathrm{Z}}(\mathrm{n})=|\mathrm{S}(\mathrm{Z}(\mathrm{n}))-\mathrm{Z}(\mathrm{~S}(\mathrm{~s}))|
$$

We will prove first that

$$
\begin{equation*}
\lim \inf \Delta_{\mathrm{s}, \mathrm{Z}}(\mathrm{n}) \leq 1 \tag{1}
\end{equation*}
$$

$$
\mathrm{n} \rightarrow \infty
$$

and

$$
\begin{equation*}
\limsup _{\mathrm{n} \rightarrow \infty} \Delta_{\mathrm{s}, \mathrm{z}}(\mathrm{n})=+\infty \tag{2}
\end{equation*}
$$

Indeed, let $n=\frac{p(p+1)}{2}$, where p is an odd prime. Then it is not difficult to see that $\mathrm{S}(\mathrm{n})=\mathrm{p}$ and $\mathrm{Z}(\mathrm{n})=\mathrm{p}$. Therefore,

$$
|S(Z(n))-Z(S(n))|=|S(p)-S(p)|=|p-(p-1)|=1
$$

implying (1). We note that if the equation $\mathrm{S}(\mathrm{Z}(\mathrm{n}))=\mathrm{Z}(\mathrm{S}(\mathrm{n}))$ has infinitely many solutions, then clearly the lim inf in (1) is 0 , otherwise is 1 , since

$$
|S(Z(n))-Z(S(n))| \geq 1
$$

$\mathrm{S}(\mathrm{Z}(\mathrm{n}))-\mathrm{Z}(\mathrm{S}(\mathrm{n}))$ being an integer.
Now let $n=p$ be an odd prime. Then, since $Z(p)=p-1, S(p)=p$ and $S(p-1) \leq \frac{p-1}{2}$
(see [4]) we get

$$
\Delta_{s, 2}(p)=|S(p-1)-(p-1)|=p-1-S(p-1) \geq \frac{p-1}{2} \rightarrow \infty \text { as } p \rightarrow \infty
$$

proving (2). Functions of type $\Delta_{f, g}$ have been studied recently by the author [5] (see also [3]).
2. Since $n \left\lvert\, \frac{(2 n-1) 2 n}{2}\right.$, clearly $Z(n) \leq 2 n-1$ for all n.

This inequality is best possible for even n, since $Z\left(2^{k}\right)=2^{k+1}-1$. We note that for odd n, we have $Z(n) \leq n-1$, and this is best possible for odd n, since $Z(p)=p-1$ for prime p. By

we get $\limsup _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{Z(n)}}{\mathrm{n}}=2$.

Since $Z\left(\frac{p(p+1)}{2}\right)=p$, and $\frac{p}{p(p+1) / 2} \rightarrow 0(p \rightarrow \infty)$, it follows
$\liminf _{n \rightarrow \infty} \frac{z(n)}{n}=0$

For $Z(Z(n))$, the following can be proved. By

$$
\begin{align*}
& Z\left(Z\left(\frac{p(p+1)}{2}\right)\right)=p-1, \text { clearly } \\
& \liminf _{n \rightarrow \infty} \frac{Z(Z(n))}{n} \quad=0 \tag{5}
\end{align*}
$$

On the other hand, by $Z(Z(n)) \leq 2 Z(n)-1$ and (3), we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{z(Z(n))}{n} \leq 4 \tag{6}
\end{equation*}
$$

3. We now prove

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}|Z(2 n)-Z(n)|=0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim \sup |Z(2 n)-Z(n)|=+\infty \tag{8}
\end{equation*}
$$

$n \rightarrow \infty$
Indeed, in [1] it was proved that $Z(2 p)=p-1$ for a prime $p \equiv 1(\bmod 4)$. Since $Z(p)=p-1$, this proves relation (7).

On the other hand, let $n=2^{k}$. Since $Z\left(2^{k}\right)=2^{k+1}-1$ and $Z\left(2^{k+1}\right)=2^{k+2}-1$, clearly $Z\left(2^{k+1}\right)-Z\left(2^{k}\right)=2^{k+1} \rightarrow \infty$ as $k \rightarrow \infty$.

References

1. C. Ashbacher, The Pseudo-Smarandache Function and the Classical Functions of Number Theory, Smarandache Notions J., 9(1998), No. 1-2, 78-81.
2. K. Kashihara, Comments and Topics on Smarandache Notions and Problems, Erhus Univ. Press, AZ., 1996.
3. M. Bencze, OQ. 351, Octogon M.M. 8(2000), No. 1, p. 275.
4. J. Sándor, On Certain New Inequalities and Limits for the Smarandache Function, Smarandache Notions J., 9(1998), No. 1-2, 63-69.
5. J. Sándor, On the Difference of Alternate Compositions of Arithmetical Functions, to appear.
