ON THE QUATERNARY QUADRATIC DIOPHANTINE EQUATIONS

NICOLAE BRATU
UNIVERSITY of CRAIOVA

In this paper are presented the parametric solutions for the homogeneous diophantine equations:
$x^{2}+b y^{2}+c z^{2}=w^{2}$
where b, c are rational integers.
I. Present theory.
Case 1:
$b=c=1$

Curmichael [2] showed that the solutions are expresions with the form:
$w=p^{2}+q^{2}+u^{2}+v^{2} ; y=2 p q+2 u v ;$
$x=p^{2}-q^{2}+u^{2}-v^{2} ; z=2 p v-2 q u ;$
where $\mathrm{p}, \mathrm{q}, \mathrm{u}, \mathrm{v}$ are rational integers.
Mordell [3] showed that only these are the equations solution's by appying the arithmetric theory of the Gaussian integers.

Case 2: $b=1 ; c=-1$. Mordell [3] showed that the solutions are, and only these, the expressions:
$2 \mathrm{x}=\mathrm{ad}-\mathrm{bc} ; 2 \mathrm{y}=\mathrm{ac}+\mathrm{bd}$;
$2 z=a c-b d ; 2 w=a d+b c ;$
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are integer parameters.
Case 3: b, c, are rational integers.
Mordell [3] took the particulary solutions with trhee parameters again, had been proposed by Euler:

$$
\begin{align*}
& w=p^{2}+b q^{2}+c u^{2} ; y=2 p q ; \tag{4}\\
& x=p^{2}-b q^{2}-c u^{2} ; z=2 p u ;
\end{align*}
$$

II. Results.

In [4] is proposed a new method to solve the quaternary equations using the notion of "quadratic combination". If we noted G_{2}^{2}, the complete system of equation's solutions: $x^{2}+y^{2}=z^{2}$, and also G_{j}^{2} for the equation: $x^{2}+y^{2}+z^{2}=w^{2}$, we sholl can to enuneiate: Definition 1: Quadratic combination is a numerical function _ \square _ which associates each two solutios from $\mathrm{G}_{2}{ }_{2}$, four solutions from $\mathrm{G}_{3}{ }^{2}$. Simbolicaly we have:

$\square: \mathrm{G}_{2}^{2} \times \mathrm{G}_{2}^{2} \rightarrow \mathrm{G}_{3}{ }^{2}$

Observation.

From the quadratic combination of the equation's solutions with the form: $x^{2}+b y^{2}=z^{2}$, we sholl obtain the solutions for the equations $x^{2}+b y^{2}+c z^{2}=w^{2}$

1. Case $b=c=1$

From the quadratic combination, we find again the solution (2). We can present another demonstration for Mordell's sentence. From [4] we have:

Theurema 1.

For the equation $E_{3}{ }^{2}$, the solutions are expresions (2) and only these. The first part of the demonstration results by verification. For the ssecond part of it, we can use the property demonstrated in [4].

Lemma 2. The multitude of the equation's solutions $\mathrm{E}_{3}{ }^{2}$ is a graph $\mathrm{F}_{3}{ }^{2}$ as terminal top the ordinary solution ($1,0,0,1$) and the arcs are given by the " t " functions:
$t=w \pm x \pm y \pm z$
The solutions are matriceally developed:
$S_{i+1}=S_{i} \cdot B \quad$, with $B=\left(\begin{array}{rrrr}0 & -1 & -1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & -1 & -1 & 2\end{array}\right)$
Lemma 3. Any solutions from the equations (2) are on the graph $\mathrm{F}_{3}{ }^{2}$ and, reciprocally, any solutions from the $F_{3}{ }^{2}$ can be written with form (2).
It was defined the term: $t_{1}=x+y+z-w ; t_{i+1}<t_{i}$, where variables are naturale numbers [4]. We are verifing that form every solution of naturale numbers can derive a solution whit $w_{1}<w$. The parameter's corespondence ($\mathrm{p}>\mathrm{q}$ and $\mathrm{u}>\mathrm{v}$) will be:

$$
\begin{array}{ll}
\mathrm{p}_{1}=\mathrm{p}-\mathrm{q}-\mathrm{v} ; & \mathrm{u}_{1}=\mathrm{u}+\mathrm{q}-\mathrm{v} ; \\
\mathrm{q}_{1}=\mathrm{q}
\end{array} ; \quad \mathrm{v}_{1}=\mathrm{v} .
$$

It is obteinid a number of decreasing values w_{1}, having as limet the ordinary solutions ($1,0,0,1$). Reciprocally, for every solution from the graph $\mathrm{F}_{3}{ }^{2}$ is obteined a number of parameterly solutions with w_{1} breeder, in cas $t_{i+1}>t_{i}$.
2. Case $\mathrm{b}=1, \mathrm{c}=-1 . \quad$ From quadratic combination resultes equations:

$$
\begin{aligned}
& w=p^{2}+q^{2}-u^{2}-v^{2} \\
& x=p^{2}-q^{2}+u^{2}-v^{2} \\
& y=2 p q+2 u v \\
& z=2 p v+2 q u
\end{aligned}
$$

It can be showed that the Mordell's solutions (3) are equivalent with solutions (6); the parameter's equivalence is given by:

$$
a=p+v \quad ; b=p-v
$$

$$
\mathrm{c}=\mathrm{q}-\mathrm{u} \quad ; \mathrm{d}=\mathrm{q}+\mathrm{u}
$$

3. Case b, c are rationale integers. For simplicity, we shell treat in two subcases:

3a) b, c prime numbers. The quadratic combination will require the solutions:

$$
\begin{align*}
& \mathrm{w}=\mathrm{p}^{2}+b q^{2}+c u^{2}+b c v^{2} \\
& \mathrm{x}=\mathrm{p}^{2}-b q^{2}-c u^{2}+b \mathrm{v}^{2} \\
& \mathrm{y}=2 \mathrm{pq}+2 \mathrm{cuv} \tag{7}\\
& \mathrm{z}=2 \mathrm{pu}-2 \mathrm{bqv}
\end{align*}
$$

3b) b and c are compound numbers. For any decomposition: $b=i \bullet j$ and $c=1 \bullet h$, where i, j, l, h are rationale integers, we have the general solutions with four parameters of the equation (1):

$$
\begin{align*}
& w=i h p^{2}+j h q^{2} \dot{i j l u^{2}}+i l v^{2} \\
& x=i h p^{2}-j h q^{2}+j l u^{2}-i l v^{2} \tag{8}\\
& y=2 h p q+2 l u v \\
& z=2 i p v-2 j q u
\end{align*}
$$

III. Applications We sholl take again from [4] only the application of the numerical representations of exponent 2. It is well known the Fermont - Lagrange Theory.

Theorema 2

For any natural number it is at least a representation by sum of four whole number's square rest:

$$
\begin{equation*}
\mathrm{z}=\mathrm{u}^{2}+\mathrm{v}^{2}+\mathrm{w}^{2}+\mathrm{t}^{2} \tag{9}
\end{equation*}
$$

Later on another Theory was demonstrated:

Theorema 3

For any natural number $z \neq 2^{2 k}(81+7)$ it is least a representation of three whole a numbers:

$$
\begin{equation*}
\mathrm{z}=\mathrm{u}^{2}+\mathrm{v}^{2}+\mathrm{w}^{2} \tag{9'}
\end{equation*}
$$

Our theory allows us to enunciate a much stranger theory:

Theorema 4

For any natural number z it is at least three whole numbers (u, v, w) or (a, b, c), in order to have:

$$
\begin{align*}
& z=u^{2}+v^{2}+w^{2} \\
& z=a^{2}+b^{2}+2 c^{2}
\end{align*}
$$

For $z=z_{1}=2^{2 k}(81+7)$, we have only the representation (β), for $z=z_{2}=2^{2 k+1}(81+7)$, we have only the representation (α) and for $z \neq z_{1} \nLeftarrow z_{2}$, we have in the same time the representations (α) and (β).

REFERENCES

I. BOREVICI I.Z., SAFAREVICI I.K.

Teoria cisel-Moscova 1964
2. CARMICHAEL R.D.

Diophantine Analyse - New-York 1915
3. MORDELL L.K.

Diophantine Equations - London 1969
4. BRATU I.N.

Note de analiză diofantică - Craiova 1996
5. DICKSON L.E.

History of the Theory of Numbers - Washington 1920

