ON THE QUATERNARY QUADRATIC DIOPHANTINE EQUATIONS

NICOLAE BRATU UNIVERSITY of CRAIOVA

In this paper are presented the parametric solutions for the homogeneous diophantine equations: $x^2 + by^2 + cz^2 = w^2$ (1) where b, c are rational integers.

I. Present theory.Case 1:b = c = 1Curmichael [2] showed that the solutions are expressions with the form:

 $w = p^{2} + q^{2} + u^{2} + v^{2}; y = 2pq + 2uv;$ $x = p^{2} - q^{2} + u^{2} - v^{2}; z = 2pv - 2qu;$ (2)

where p, q, u, v are rational integers.

Mordell [3] showed that only these are the equations solution's by appying the arithmetric theory of the Gaussian integers.

Case 2: b = 1; c = -1. Mordell [3] showed that the solutions are, and only these, the expressions:

2x = ad - bc; 2y = ac + bd; (3) 2z = ac - bd; 2w = ad + bc;

a, b, c, d are integer parameters.

Case 3: b, c, are rational integers.

Mordell [3] took the particulary solutions with trhee parameters again, had been proposed by Euler:

 $w = p^{2} + bq^{2} + cu^{2}; y = 2pq;$ (4) x = p² - bq² - cu²; z = 2pu;

II. Results.

In [4] is proposed a new method to solve the quaternary equations using the notion of "quadratic combination". If we noted G_2^2 , the complete system of equation's solutions: $x^2 + y^2 = z^2$, and also G_3^2 for the equation: $x^2 + y^2 + z^2 = w^2$, we sholl can to enuneiate: Definition 1: Quadratic combination is a numerical function _ ____ which associates each two solutios from G_2^2 , four solutions from G_3^2 . Simbolicaly we have:

 $\Box: G^2, x G^2, \to G_3^2$

Observation.

From the quadratic combination of the equation's solutions with the form: $x^2 + by^2 = z^2$, we sholl obtain the solutions for the equations $x^2 + by^2 + cz^2 = w^2$ [4]

1. Case b = c = 1

From the quadratic combination, we find again the solution (2). We can present another demonstration for Mordell's sentence. From [4] we have:

Theurema 1.

For the equation E_3^2 , the solutions are expressions (2) and only these. The first part of the demonstration results by verification. For the ssecond part of it, we can use the property demonstrated in [4].

Lemma 2. The multitude of the equation's solutions E_3^2 is a graph F_3^2 as terminal top the ordinary solution (1, 0, 0, 1) and the arcs are given by the "t" functions: t = w ± x ± y ± z

The solutions are matriceally developed:

$$S_{i+1} = S_i \cdot B \quad \text{, with } B = \begin{pmatrix} 0 & -1 & -1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & -1 & -1 & 2 \end{pmatrix}$$
(5)

Lemma 3. Any solutions from the equations (2) are on the graph F_3^2 and, reciprocally, any solutions from the F_3^2 can be written with form (2).

It was defined the term: $t_1 = x + y + z - w$; $t_{i+1} < t_i$, where variables are naturale numbers [4]. We are verifing that form every solution of naturale numbers can derive a solution whit $w_1 < w$. The parameter's corespondence (p > q and u > v) will be:

$$p_1 = p - q - v;$$
 $u_1 = u + q - v;$
 $q_1 = q;$ $v_1 = v$

It is obtained a number of decreasing values w_1 , having as limet the ordinary solutions (1, 0, 0, 1). Reciprocally, for every solution from the graph F_3^2 is obtained a number of parameterly solutions with w_1 breeder, in cas $t_{i+1} > t_i$.

2. Case b = 1, c = -1. From quadratic combination resultes equations:

 $w = p^{2} + q^{2} - u^{2} - v^{2}$ $x = p^{2} - q^{2} + u^{2} - v^{2}$ y = 2pq + 2uvz = 2pv + 2qu(6)

It can be showed that the Mordell's solutions (3) are equivalent with solutions (6); the parameter's equivalence is given by:

$$a = p + v \qquad ; b = p - v \qquad 14i$$

148

c = q - u; d = q + u

3. Case b, c are rationale integers. For simplicity, we shell treat in two subcases:

3a) b, c prime numbers. The quadratic combination will require the solutions:

$$w = p2 + bq2 + cu2 + bcv2$$

$$x = p2 - bq2 - cu2 + bcv2$$

$$y = 2pq + 2cuv$$

$$z = 2pu - 2bqv$$

(7)

3b) b and c are compound numbers. For any decomposition: $b = i \cdot j$ and $c = l \cdot h$, where i, j, l, h are rationale integers, we have the general solutions with four parameters of the equation (1):

 $w = ihp^{2} + jhq^{2} + jlu^{2} + ilv^{2}$ $x = ihp^{2} - jhq^{2} + jlu^{2} - ilv^{2}$ y = 2hpq + 2luvz = 2ipv - 2jqu

(8)

III. Applications We sholl take again from [4] only the application of the numerical representations of exponent 2. It is well known the Fermont - Lagrange Theory.

Theorema 2

For any natural number it is at least a representation by sum of four whole number's square rest: $z = u^2 + v^2 + w^2 + t^2$ (9)

Later on another Theory was demonstrated:

Theorema 3

For any natural number $z \neq 2^{2k}(8l + 7)$ it is least a representation of three whole a numbers: $z = u^2 + v^2 + w^2$ (9')

Our theory allows us to enunciate a much stranger theory:

Theorema 4

For any natural number z it is at least three whole numbers (u, v, w) or (a, b, c), in order to have :

 $z = u^{2} + v^{2} + w^{2}$ (a) (10) $z = a^{2} + b^{2} + 2c^{2}$ (β)

For $z = z_1 = 2^{2k}(8l + 7)$, we have only the representation (β), for $z = z_2 = 2^{2k+1}(8l + 7)$, we have only the representation (α) and for $z \neq z_1 \neq z_2$, we have in the same time the representations (α) and (β).

REFERENCES

1. BOREVICI I.Z., SAFAREVICI I.K.

Teoria cisel - Moscova 1964

2. CARMICHAEL R.D.

Diophantine Analyse - New-York 1915

3. MORDELL L.K.

Diophantine Equations - London 1969

4. BRATU I.N.

Note de analiză diofantică - Craiova 1996

5. DICKSON L.E.

History of the Theory of Numbers - Washington 1920