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For any positive integer n, the Srnarandache double factorial 

function Sdj( n) is defined as the least positive integer m such that m!! 

is divisible by n, where 

{
2.4 ... m, 

m!!= 
1.3 ... m, 

if 21m, 

if 21m. 

In this paper we shall discuss various problems and conjectures concerned 

Sdj(n). 

1. The valua of Sdf(n) 

By the definition of Sd.f(n), we have Sdj(l)=l and Sdj(n» 1 if n 

> 1. We now give three general results as follows. 

Theorem 1.1. If2.rn and 

(1 1) - QI Q2 a~ . n- PI P2 ,,·PIc 

is the factorization of n, where PI' P2' ••• , Pk are distinct odd primes 

and OJ> 02' "', Ok are positive integers, then 
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Proof. Let mj = sdf(P/') for i= I, 2, ... , k. Then we get 2,r mi 

(i=1,2, ... , k) and 

(1.3) a'i "'-12 k pj mj .. ,l-, , ... , . 

(1.4) m "Imll z=. 1 2 ... k i-· .. , ~" ,. 

Therefore, by (1.3) and (1.4), we get 

(1.5) P;' I m!!,i = 1,2, .. . ,k. 

Notice that PI' P2, .•• , Pk are distinct odd primes. We have 

(1.6) gcd(p;' , p;l ) = 1, 1 ~ i <j ~ k. 

Thus, by (1.1), (1.5) and (1.6), we obtain nlm!1. It implies that 

( 1.7) Sdf(n)~m. 

On the other hand, by the definition of m, if Sdj(n)<m, then there 

exists a prime power 

(l.8) 

~/(l < . <k) PJ -1-

P;' I Sdf(n)!!. 

such that 

By (1.1) and (1.8), we get n I Sdf(n)!!, a contradiction. Therefore, by 

(1.7), we obtain Sd.f{n)=m. It implies that (1.2) holds. The theorem is 

proved. 

Theorem 1.2. If 21n and 

(1.9) 

where a, n l are positive integers with 2,rn l , then 
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(1.10) 

Proof. Let mo=SdfC2a) and m1=SdfCn1). Then we have 

(1.11) 2almo!!, ndmJ!!. 

Since (2m 1)!!=2.4···(2m1)=2nl
' • m1!=2nl

, • ml!!(mJ-1)!!, we get ml!!1(2m1)!!. 

It implies that 

(1.12) 

Let m=max(mo' 2m1). Then we have mo!!lm~! and (2ml)!!lm!!. Since 

gcd (2a, n l )=l, we see from (1.9), (1.11) and (1.12) that nlm!!. Thus, 

we obtain SdfCn)~m. It implies that (1.10) holds. The theorem is 

proved. 

Theorem 1.3. Let a, b be two positive integers. Then we have 

{

Sdf(a) + Sdf(b), if 21 a and 21 b, 

(1.13) Sdf(ab)~ Sdf(a)+2Sdf(b), if 2/a and 21b, 

2Sdf(a) + 2Sdf(b)-1, if 21a and 21b. 

Proof. By Theorem 4.13 of [4], if21a and 21b, then 

(1.14) Sdf{a)=2r, Sdj{b)=2s, 

where r, s are positive integers. We see from (1.14) that 

(1.15) 

Notice that 

al(2r)!!, bI(2s)!!. 

(1.16) (2r + 2s)!! 2
r
+

s
• (r + s)! (r + s)! (r + SJ 

(2r)U(2s)!! = (2 r
• r!)(2s

• s!) = r!s! = r ' 

where (
r +sJ (r+ sJ r is a binomial coefficient. Since r is a positive 

integer, we see from (1.16) that 
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( 1.17) (2r)!!(2s)! !1(2r+2s)!! 

Thus, by (1.15) and (1.17), we get abl(2r+2s)!1. It implies that 

(1.18) Sdf(ab)~2r+2s, if21a and 21b. 

If21a and 21'b, then 

( 1.19) Sdj{a)=2r, Sdf(b )=18+ 1, 

where a is a positive integer and s is a nonnegative integer. By (1.19), 

we get 

(1.20) aI(2r)!!, bI(2s+1)!!' 

Notice that 

(1.21) 
(2r + 4s + 2)!! _ 2r

+
2s

+
l
• (r + 2s + I)! 2s

• s! 

(2r)!!(2s + l)!! 2r
• r! (2S + I)! 

= 23.+1. s! (r + 2s + I)! = 2-h - l . S!(r + 2s + 1). 
r!(2s + 1) r 

We find from (1.21) that 

(1.22) (2r)!!(2s+ I)! !1(2r+4s+2)!!. 

Thus, by (1.20) and (1.22), we obtain abl(2r+4s+2)!1. It implies that 

(1.23) Sdf(ab)~2r+4s+2, if21a and 2/b. 

If 2 I a and 2 I b , then 

( 1.24) Sdf( a )=2r+ 1 , Sdf( b )=2s+ I, 

where r, s are nonnegative integers. By (1.24), we get 

( 1.25) al(2r+l)!!, bl(2s+I)!!. 

Notice that 
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(1.26) 
(4r+4s+3J.! _ (4r+4s+3)! (2r)!!. (2s)!! 

(2r + 1)!!(2s + I)!! (4r + 4s + 2)!! (2r + I)! (2s + I)! 

= (4r+4s+3)! . 2r. r! 2s. s! 
22r+2s+1. (2r + 2s + I)! (2r + I)! (2s + I)! 

r!s! ( 4r + 4s + 3 J 
= 2r+s+1 2r + 2s + 1,2r + 1,2s + 1 ' 

( 
4r + 4s + 3 J 

where 2r + 2s + 1, 2r + i, 2s + 1 is a polynomial coefficient. Since 

( 
4r +4s+3 J 

2r + 2s + 1, 2r + 1, 2s + 1 
is a positive integer and (2r+ 1 )! !, (2s+ 1 )! ! 

are odd integers, we see from (1.26) that 

( 1.27) (2r+l )!!(2s+ I)! !Ie 4r+4s+ 3)!!. 

Thus, by (1.25) and (1.27), we get abl( 4r+4s+ 3)!!. It implies that 

(1.28) Sdj{ab)~4r+4s+3, if21 a and 21 b. 

The combination of (1.18), (1.23) and (1.28) yields (1.13). The n 

theorem is proved. 

Theorem 1.4 Let p be a prime and let a be a positive integer. The 

we have 

(1.29) 

Proof. Let m=SdflJf). By Theorem 4.13 of [4), if p=2, then m is 

even. Hence, (1.29) holds for p=2. If p>2, then m is an odd integer 

with 

(1.30) 
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We now suppose that pi m. Let t be the greatest odd integer such that t 

<m andplt. Then we have 

(1.31) m!!=t!!(t+2)···(m-2)m, 

where t+2, ... , m-2, m are integers satisfYingp.(Ct+2)···(m-2)m. Therefore, 

by (1.30) and (1.31), we get 

(1.32) palt!! 

By (1.32), we get m=Sdj(pq)~t<m, a contradiction. Thus, we obtain 

plm. The theorem is proved. 

Theorem 1.5 Let P be the least prime divisor of n. Then we have 

(1.33) Sd.f{n),?:;p. 

Proof. Let m=Sd.f{n). By Theorem 4.13 of [4], if 21n, then p=2 

and m is an even integer. So we get (1.33). 

If21 n, let n = p;lp;2 ... p; • • where PI' P2, ... , Pk are distinct odd 

primes and aI' a2, ••• , ak are positive integers. By Theorem 1.1, we get 

(1.34) m = max(Sd/(p;' 1Sd/(P;l 1 ... ,Sd/(p;t )} 

Further, by Theorem 1.4, we have Pi I Sdj(pjai ) for i= 1, 2, ... , k. 

It implies that Sd/(P;' ) ~ Pi for i= I, 2, ... , k. Thus, by (1.34), we 

obtain 

(1.35) m'?:;min{PI,P2' ···,Pk)=P. 

The theorem is proved. 

Theorem 1.6 For any positive integer n, we have 
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(1.36) Sdf(n!) = {
n, 

2n, 

if n = 1,2, 

if n>2. 

Proof. Let m=Sdj{n!). Then (1.36) holds for n=I, 2. Ifn>2, then 

both n! and m are even. Since (2n)! !=2"n!, we get 

(1.37) m~2n. 

If m<2n, then m=2n-2r, where r is a positive integer. Since m=Sdj{n!), 
(2n - 2r ).! _ 2,,-r. (n - r)! _ 2,,-r 

- -
n! (n - r + I) ... (n -I)n 

(1.38) 
n! 

must be an integer. But, since either n-I or n is an odd integer great 

than 1, it is impossible by (1.38). Thus, by (1.37), we obtain m=2n. 

The theorem is proved. 

Theorem 1.7 The equality 

( 1.39) Sdf(n)=n 

holds if and only if n satisfies one of the following conditions: 

(i)n=1,9. 

(ii) n=p, where p is a prime. 

(iii) n=2p, where p is a prime~ 

Proof. Let m=Sdj{n). If 2 I n, let n = P;' p;z ... p;k be the 

factorization of n. By Theorem 1.1, we (1.34). Further, by Theorem 

4.7 of [4], we have 

(lAO) Sdf(P;i )~ p;', i = 1, 2, ... , k. 

Therefore, by (1.34) and (1.40), we obtain 

(I 41) < (a, az a4 ) . m - max PI ,P2 ,···,Pk 

It implies that if k> I, then m<n. If k=1 and (1.39) holds, then 
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(1.42) 

By Theorem 4.1 of [4], (1.42) holds for a,=l. Since 2 In, p, is an odd 

prime. By Theorem 1.3, if (1.42) holds, then we have 

(1.43)p;1 = m = Sdj(P;I)= Sdj(p,p, ... p,)5: 2a,· Sdj(p,) -1 = 2a l PI -1 

Since PI ~3, (1.43) is impossible for at >2. If a)=2, then from (1.43) 

we get 

(1.44) 

whence we obtain PI=3. Thus, (1.39) holds for an odd integer n if and 

only if n= 1.9 or p, where p is an odd prime. 

If 21n, then n can be rewritten as (1.9), where n) is an odd integer 

with n l ~ 1. By Theorem 1.2, if (l.39) holds, then we have 

(l.45) n=2Qn , ~ max(Sdj{2°), 2Sdj{nJ). 

We see from (1.45) that if(l.39) holds, then either n)=1 ora=l. 

When nt=I, we get from (1.39) that a=l or 2. When a=I, we get, 

(1.46) 2n)=Sdj{2n). 

It is a well known fact that if n) is not an odd prime, then there exists a 

positive integer t such that t<n) and nIl t!. Since (2t)!!=21 
• t!, we get 

(1.47) Sdj{2n)~2t~2n" 

a contradiction. Therefore, n) must be an odd prime. In this case, if 

Sdj{2n)<2n), then Sdj{2n,)=2n,-2r, where r is a positive integer. But, 

smce 

(1.48) 

is not an integer, it is impossible. Thus, (1.39) holds for an even 
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integer if and only if n=2p, where p is a prime. The theorem is proved. 

2. The inequalities concerned Sdf{n) 

Let n be a positive integer. In [4], Russo posed the following 

problems and conjectures. 

(2.1) 
n n 

---~-+2 
Sdf(n) 8 

Problem 2.1. Is the inequality 

true for any n? 

Problem 2.2. Is the inequality 

(2.2) Sdf(n) >_1_ 
n nO.73 

true for any n? 

Problem 2.3. Is the inequality 

(2.3) 1 <n-5/4 

n·Sdf(n) 

true for any n? 

(2.4) 
1 1 __ -1/4 
-+ -.........n 
n Sdf(n) 

Problem 2.4. Is the inequality 

true for any n with n>2? 

Conjecture 2.1. For any positive number e , there exist some n 

such that 

(2.5) Sdf(n) < e 
n 

In this respect, Russo [4] showed that if n:::; 1000, then the 
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inequalities (2.1), (2.2), (2.3) and (2.4) are true. We now completely 

solve the above-mentioned questions as follows. 

Theorem 2.1. For any positive integer n, the inequality (2.1) is 

true. 

Proof. We may assume that n> 1000. Since m!!~945 for m=l, 

2, ···,9, ifn>1000, then Sdj{n)~10. So we have 

n n n 
---::;·-<-+2. 
Sdf(n) 10 8 

(2.6) 

It implies that (2; 1 ) holds. The theorem is proved. 

'The above theorem shows that the answer of Problem 2.1 is "yes". 

In order to solve Problems 2.2, 2.3 and 2.4, we introduce the 

following result. 

Theorem 2.2. If n=(2r)!!, where r is a positive integer withr r~ 

20, then 

(2.7) SdfCn) <no. l . 

Proof. We now suppose that 

(2.8) Sdf{n)~n°.l. 

Since n=(2r)!!, we get Sdf{n)=2r. Substitute it into (2.8), we obtain 

that ifr~20, then 

(2.9) 2r~«2r)!!)O,I_20,lr(r!)O.1 ~22(r!)O.l. 

By the Strling theorem (see [1]), we have 

(2.10) r!>.Jzur(; J. 
Since r~20, we get rle> Fr . Hence, by (2.9) and (2.10), we obtain 
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(2.11 ) 

a contradiction. Thus, we get (2.7). The theorem is proved. 

By the above theorem, we obtain the following corollary immediately. 

Corollary 2.1. If n=(2r)!!, where r is a positive integer with r?:-

20, then the inequalities (2.2), (2.3) and (2.4) are false. 

The above corollary means that the answers of Problems 2.2, 2.3 

and 2.4 are "no". 

Theorem 2.3. For any positive number e , there exist some 

positive integers n satisfy (2.5). 

Proof. Let n=(2r)!!, where r is a positive integer with r?:-20. By 

Theorem 2.2, we have 

(2.12) 

By (2.12), we get 

(2.13) 

Sdf(n)<nO. 1 =_1_ 
n n nO.9 • 

lim Sdf(n) = 0; 
r~CIJ n 

Thus, by (2.13), the theorem is proved. 

By the above theorem, we see that Conjecture 2.1 is true. 

3. The difference ISdftn+l)-Sdj(n)1 

In [4], Russo posed the following problem. 

Problem 3.1. Is the difference ISd.f{n+l)-Sd.f{n)1 bounded or 

unbounded? 
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We now solve this problem as follows. 

Theorem 3.1. The difference ISdj{n+ 1)-Sdj(n)1 is unbounded. 

Proof. Let m be a positive integer, and let p be a prime. Further 

let ord (p, m!) denote the order ofp in m. For any positive integer a, it 

is a well known fact that 

(3.1) ord(p,a!) = ~ [~]. 
k=1 pk 

(see Theorem 1.11.1 of[3]). 

Let r be a positive integer. Then we have 

(3.2) 

where 

(3.3) s=2r-l. 

By (3.1), (3.2) and (3.3), we get 

(3.4) ord(2, 2r! !)=2r-'+ord(2, 2r-1 !)=2r-I+(2r-2+···+2+ I )=2r_1 

Let n=2/, where t=2r. Then, by (3.4), we get 

(3.5) Sd.f(n)=2r+2 

On the other hand, then n+ 1 =2'+ 1 is a Fermat number. By the 

proof of Theorem 5.12.1 of [3], every prime divisor q of n+ 1 is the 

- form q=2r+11+ 1, where I is a positive integer. It implies that 

(3.6) q~2r+1+ 1. 

Since n+ 1 is an odd integer, by Theorem lA, we get from (3.6) that 

(3.7) Sdj{n+l)~q~2r+'+ l. 

We see from (3.8) that the difference ISdj{n+l)-Sdj(n)1 is unbounded. 

Thus, the theorem is proved. 
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4. Some infinite series and products concerned Sdf(n) 

In [4], Russo posed the following problems. 

Problem 4.1. Evaluate the infinite series 

(4.1) S= I (-It. 
n-ISdf(n) 

Problem 4.2. Evaluate the infinite product 

(4.2) P= n I 
n=1 Sdf(n) 

We now solve the above-mentioned problems as follows. 

Theorem 4.1. S=co. 

Proof. For any nonnegative integer m, let 

-1 <Xl 1 
g(m)= + I (.( )). 

Sdf(2m + 1) i=ISdf 2' 2m + 1 
(4.3) 

By (4.1) and (4.3), we get 

(4.4) S= I gem). 
m=O 

We see from (4.3) that 
1 1 1 

(4.5) g(O)=-I+ Sdf(2) + Sdf(4) + Sdf(8) + ... 

11111 
=-1+-+-+-+- + ... >-. 

2 4 4 6 6 

For positive integer m, let t=Sdj{2m+ 1). Then t is an odd integer with t 

~3. Notice that 2m+llt!! and 

(4.6) (2t)! !=2' • t!!. 

We get from (4.6) that i(2m+l)I(2t)!! forj=I, 2, .'., t.1t implies that 
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(4.7) Sdj{2l"(2m+ 1»~2t,j=1, 2, ... , t. 

Therefore, by (4.3) and (4.7), we obtain 
1 1 111 

(4.8) g(m»--+-+-+-=-. 
t 2t 2t 2t 2t 

On the other hand, by Theorem 4.7 of[4], we have t~2m+1. By (4.8), 

we get 

(4.9) gem»~ 2(2~ + 1) 

Thus, by (4.4), (4.5) and (4.9), we obtain 
1 00 1 

(4.10) S>-+ L =00. 
6 m='2(2m + 1) 

The theorem is proved. 

Theorem 4.2. P=O. 

Proof. Since Sdj{n) > 1 ifn> 1, by (4.2), we getp=O immediately. 

The theorem is proved. 

5. The diophantine equations concerned Sdf{n) 

Let N be the set of all positive integers. In [4], Russo posed the 

following problems. 

Problem 5.1 Find all the solutions n of the equation 

(5.1) Sdj{n)!=Sdj{n!), nEN. 

Problem 5.2 Is the equation 

(5.2) (Sdj{n)l=k· Sdj{nk), n, kEN, n> 1, k> 1 

have solutions (n, k)? 

Problem 5.3 Is the equation 
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(5.3) Sdj(mn)=mk • Sdj(m), m, n, kE N 

have solutions em, n, k)? 

We now completely solve the above-mentioned problems as follows. 

Theorem 5.1 The equation (5.1) has only the solutions n=l, 2, 3. 

Proof. Clearly, (5.1) has solutions n=l, 2, 3. We suppose that (5.1) 

has a solution n with n>3. By Theorem 1.6, ifn>2, then 

(5.4) Sdj(n)!=2n. 

Substitute (5.4) into (5.1), we get 

(5.5) Sdf{n)!=2n. 

Let m=Sdf{n). If n>3 and 2 I n, then n?!5, m?!5 and 41mL 

However, since 2112n, (5.5) is impossible. 

If n >3 and 21n, then m=2t, where t is a positive integer with t> 1. 

From (5.5), we get 

(5.6) (2t)!=2n. 

Since m=Sdj(n), we have nI(2t)!!. It implies that 

(2t)!! = 2· (2t)!! = 2· (2t)!! = 2 
n (2t)! (2t)!!(2t -I)!! (2t -I)!! 

must be an integer. But, since t> 1, it is impossible. Thus, (5.1) has no 

solutions n with n>3. The theorem is proved. 

Theorem 5.2 The equation (5.2) has only the solutions (n, k)=(2, 

4) and (3, 3). 

Proof. Let (n, k) be a solution of (5.2). Further, let m=Sdf{n). By 

Theorem 1.3, we get 
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(5.7) Sdf(nk)<2 • Sdf(n)+2 • Sdf(k)'~2(m+k). 

Hence, by (5.2) and (5.7), we obtain 

(5.8) mk<2k(m+k), m> 1, k> 1. 

If m=2, then from (5.8) we get k~6. Notice that n=2 if m=2. We 

find from (5.2) that if m=2 and k~6, then (5.2) has only the solution 

(n, k)=(2, 4) 

If m=3, then from (5.8) we get k~3. Since n=3 if m=3. We see 

from (5.2) that if m=2 and k~3, then (5.2) has only the solution (n, 

k)=(3,3) 

If m=4, then from (5.8) we get k~2. Notice that n~ or 8 if m=4 

and n=5 or 15 if m=5. Then (5.2) has no solution (n, k). Thus, (5.2) 

has only the solutions (n, k)=(2, 4) and (3.3). The theorem is proved. 

Theorem 5.3. All the solutions (m, n. k) of (5.3) are given in the 

following four classes: 

(i) m=I, n and k are positive integers. 

(ii) n=l, k=1, m=l, 9,p or 2p, where p is a prime. 

(iii) m=2, k= I, n is 2 or an odd integer with n ~ 1. 

(iv) m=3, k=l, n=3. 

Proof. If m=1, then (53) holds for any positive integers n and k. 

By Theorem 1.7, if n=l, then from (5.3) we get (ii). Thus, (i) and (ii) 

are proved. 

Let (m, n, k) be a solution of (5.3) satisfying m> 1 and n> 1. By 

Theorem 1.3, if21m and 21n, then we have 
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(S.9) SdJCmn)~SdJCm)+Sdf{n). 

Further, by Theorem 4.7 of [4], Sdf(m)~m. Therefore, by (S.3) and 

(S.9), we obtain 

(S.10) 

When n=2, we get from (S.1 0) that m=2 and k= 1. 

When n>2, we getSdJCn)~4 and (S.10) is impossible. 

If 21m and 2 I n, then 

(5.11) SdJCmn)~Sd.f{m)+2 • Sdf{n). 

Notice that m~2, n is an odd integer with n~3, Sd.f{n)~3. We obtain 

from (S.3) and (S.ll) that 

(5.12) m ~SdJCm) ~(mk-2)Sdf(n) ~3(mk-2) ~ 3 (m-2). 

From (5.12), we get /11=2. Then, by (5.3), we obtain 

(5.13) Sdf{2n)=2k • Sdf{n). 

Since Sdj{2n)~2n, we see from (5.13) that k=1 and 

(5.14) Sdj{2n)=2 • Sdj{n). 

Notice that (5.14) holds for any odd integer n with n~ 1. We get(iii). 

If21 m and 21n, then we have 

(5.1S) Sd.f{mn)~2 • Sd.f{m}+Sdj{n). 

By (5.3) and (5.15), we get 

(5.16) 2m~2 • Sdj{m)~(mk-l) • Sdj{n). 

When n=2, we see from (S.16) that m=3 and k=l. When n>2, we get 

from (S.16) that 2m~4(mk-l )~4(m-l»2m, a contradiction. 
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If21 m and 21 n, then we have 

(5.17) Sdj{mn)~2 • Sdj{m)+2 • Sdj{n)-l. 

By (5.3) and (5.17), we get 

(5.18) 2m-1 ~2 • Sdj{m)-l ~(mk-2) • Sdj{n)~3(mk-2). 

It implies that k=1 and m=3 or 5. Wher m=3 and k=1, we get from (5.3) 

that 

(5.19) Sdj{3n)=3 • Sd.f{n). 

Since Sdj{3n)~Sd.f{n)+6, we find from (5.19) that n=3. Thus, we get 

(iv). When m=5 and k=l, we have 

(5.20) Sdj{5n)=5 • Sd.f{n). 

Since Sdj{5n)~Sdj{n)+10, (5.20) is impossible. To sum up, the 

theorem is proved. 

Let p be a prime, and let N(P) denote the number of solutions x of 

the equation 

(5.21) Sdj{x)=p, xEN. 

Recently, Johnson showed that ifp is an odd prime, then 

(5.22) N(p)=2(P-3Y2. 

Unfortunately, the above-mentioned result is false. For example, by 

(5.22), we get N(19)=28=256. However, the fact is that N( 19)=240. We 

now give a general result as follows. 

Theorem 5.4. For any positive integer t, let pet) denote the tth 

odd prime. If p=p(t) , then 
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(5.23) 
I-I 

N (p) = .n ( a( i) + 1), 
1=1 

where 

• Xl ([ P-2] [(P-3)/2]]. 
(5.24) a(z) = m7:\ (p(i)t - (p(i)t ,1 = 1,2, .. . ,t-1. 

Proof. Let x be a solution of(5.21). It is an obvious fact that 

(5.25) :x=dp. 

where d is a divisor of (P-2)!!. So we have 

(5.26) N(P )=d( (p-2)!!), 

where d«(P-2)!!) is the number of distinct divisors d of (P-2)!!. 

By the definition of(P-2)!!, we have 

(5.27) (P-2)! !=(P(1 »a(1)(p(2»a(2) •• '(p(t-1 »a(I-I), 

where 

(5.28) aU)=ord(p(i), (P-2)!!), i=l, 2, "', t-1. 

Notice thet 

(529) (p _ 2)!!= (p - 2)! . 

2,p-3)12 -( P ~ 3} 
We get 

(5 .30)ord{p(i),{p - 2)!!) = ord{p{i),{p - 2)!) - or{ p(i){ p ~ 3 }} 

Therefore, by Theorem 1.11.1 of [3], we see from (5.28) and (5.30) 

that aU) (i=1, 2, ... , t-1) satisfy (5.24). Further, by Theorem 273 of 

[2], we get from (5.27) that 
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(5.31) 
I-I deep - 2)!!) = n(a(i) + 1). 
i=1 

Thus, by (5.26), we obtain (5.23). The theorem is proved. 
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