ON THE SMARANDACHE PRIME ADDITIVE COMPLEMENT SEQUENCE

Maohua Le
Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Abstract. Let k be an arbitrary large positive integer. In this paper we prove that the Smarandache prime additive complement sequences includes the decreasing sequence $\mathrm{k}, \mathrm{k}-1, \ldots, 1,0$.

For any positive integer n, let $p(n)$ be the smallest prime which does not excess n. Further let $d(n)=p(n)-n$. Then
the sequence $\quad D=\{d(n)\}_{n=1} \quad$ is called the Smarandache prime additive complement sequence. Smarandache asked that if it is possible to as large as we want but finite decreasing sequence $\mathrm{k}, \mathrm{k}-1, \ldots, 1,0$ included in D ? Moreover, he conjectured that the answer is negative (see [1, Notion 46]). Howevwer, we shall give a positive answer for Smarandache's questions. In this paper we prove the following result:

Theorem. For an arbitrary large positive integer k, D includes the decreasing sequence $k, k-1, \ldots, 1,0$.

Proof. Let $n=(k+1)!+1$. Since $2,3, \ldots, k+1$ are proper divisors of $(\mathrm{k}+1)$!, then all numbers $\mathrm{n}+1, \mathrm{n}+2, \ldots \mathrm{n}+\mathrm{k}$ are composite numbers. It implies that $\mathrm{d}(\mathrm{n}) \geq \mathrm{k}$. Therefore,

D includes the decreasing sequence $\mathrm{k}, \mathrm{k}-1, \ldots, 1,0$. The theorem is proved.

Reference

1. Dumitrescu and Seleacu, Some Notions and Questions In Number Theory, Erhus Univ. Press, Glendale, 1994
