ON THE THIRD SMARANDACHE CONJECTURE ABOUT PRIMES

Maohua Le

Abstract . In this paper we basically verify the third Smarandache conjecture on prime.

Key words. Smarandache third conjecture, prime, gap.

For any positive integre n, let $P(n)$ be the n-th prime. Let k be a positive integer with $k>1$, and let

$$
\begin{equation*}
c(n, k)=(P(n+1))^{1 / k}-(P(n))^{1 / k} . \tag{1}
\end{equation*}
$$

Smarandache [3] has been conjectured that

$$
\begin{equation*}
C(n, k)<\frac{2}{k} . \tag{2}
\end{equation*}
$$

In [2], Russo verified this conjecture for $P(n)<2^{25}$ and 2 $\leqslant k \leqslant 10$. In this paper we prove a general result as follows.

Theorem. If $k>2$ and $n>C$, where C is an effectively computable absolute constant, then the inequality (2) holds.

Proof. Since $k>2$, we get from (1) that $P(n+1)-P(n)$
$C(n, k)=$

$$
(P(n+1))^{(k-1) / k}+(P(n+1))^{(k-2) / k}(P(n))^{1 / k}+\ldots+(P(n))^{(k-1) / k}
$$

$$
\begin{equation*}
<\frac{P(n+1)-P(n)}{k(P(n))^{(k-1) k}} \leqslant \frac{2}{k}\left(\frac{(P(n+1)-P(n)}{2\left(P(n)^{2 / 3}\right.}\right) \tag{3}
\end{equation*}
$$

By the result of [1], we have
(4)

$$
P(n+1)-P(n))<C(a)(P(n))^{11 / 20+a},
$$

for any positive number a, where $C(a)$ is an effectively
computable constant depending on a. Put $a=1 / 20$. Since $k \geq 3$ and $(k-1) / k \geq 2 / 3$, we see from (3) and (4) that $C(n, k)<\frac{2}{k}\left(\frac{C(1 / 20)}{2(P(n))^{1 / 15}}\right)$
Since $C(1 / 20)$ is an effectively computable absolute constant, if $n>C$, then $2(P(n))^{1 / 5}>C(1 / 20)$. Thus, by (5), the inequality (2) holds. The theorem is proved.

References

[1] D.R. Heath-Brown and H. Iwaniec, On the difference between consecutive primes, lnvent. Math. 55(1979), 49-69.
[2] F.Russo, An experimental evidence on the validity of third Smarandache conjecture on primes, Smarandache Notions J. 11(2000), 38-41.
[3] F. Smarandache, Con jectures which generalized Andrica's conjecture, Octogon Math . Mag.7(1999), 173-76.

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P.R. CHINA

