ON THREE NUMERICAL FUNCTIONS

bv

I. Balacenoiu and V. Seleacu

In this paper we define the numerical functions ϕ_s , ϕ_s^* , ω_s and we prove some properties of these functions.

1. Definition. If S(n) is the Smarandache function, and (m, n) is the greatest common divisor of m and n, then the functions ϕ_s , ϕ_s^* and ω_s are defined on the set N* of the positive integers, with values in the set N of all the non negative integers, such that:

$$\varphi_{s}(x) = Card\{m \in \mathbb{N}^{*} / 0 \le m \le x, (S(m), x) = 1\}$$

$$\varphi_{s}^{*}(x) = Card\{m \in \mathbb{N}^{*} / 0 \le m \le x, (S(m), x) \ne 1\}$$

 $\omega_{s}(x) = \operatorname{Card} \{ m \in \mathbb{N}^{*} / 0 \le m \le x, \text{ and } S(m) \text{ divides } x \}.$

From this definition it results that:

$$\varphi_{s}(x) + \varphi_{s}^{*}(x) = x \text{ and } \omega_{s}(x) \le \varphi_{s}^{*}(x)$$
(1)

for all $x \in N^*$.

2. Proposition. For every prime number $p \in N^*$ we have

$$\varphi_{s}(p) = p - 1 = \varphi(p), \ \varphi_{s}(p^{2}) = p^{2} - p = \varphi(p^{2})$$

where ϕ is Euler's totient function.

Proof. Of course, if p is a prime then for all integer a satisfying $0 \le a \le p - 1$ we have (S(a), p) = 1, because $S(a) \le a$. So, if we note $M_1(x) = \{m \in \mathbb{N}^* / 0 \le m \le p, (S(m), p) = 1\}$ then $a \in M_1(p)$.

At the same time, because S(p) = p, it results that $(S(p), p) = p \neq 1$ and so $p \notin M_1(p)$.

Then we have $\varphi_s(p) = p - 1 = \varphi(p)$.

The positive integers a, not greater than p^2 and not belonging to the set $M_1(p^2)$ are: p, 2p, ..., (p-1)p, p^2 . For p = 2 this assertion is evidently true, and if p is an odd prime number then for all h < p it results $S(h \cdot p) = p$.

Now, if $m < p^2$ and $m \neq hp$ then $(S(m), p^2) = 1$. Indeed, if for $m = q_1^{\alpha_1} \cdot q_2^{\alpha_2} \cdots q_r^{\alpha_r}, q_i \neq p$ we have $(S(m), p^2) \neq 1$, then it exists a divisor q^{α} of m such that $S(m) = S(q^{\alpha}) = q(\alpha - i_{\alpha})$, with $i_{\alpha} \in \left[0, \left\lfloor \frac{\alpha - 1}{q} \right\rfloor\right]$.

From $(q(\alpha - i_{\alpha}), p^2) \neq 1$ it results $(q(\alpha - i_{\alpha}), p) \neq 1$ and because $q \neq p$ it results $(\alpha - i_{\alpha}, p) \neq 1$, so $(\alpha - i_{\alpha}, p) = p$. But p does not divide $\alpha - i_{\alpha}$ because $\alpha < p$.

Indeed, we have:

$$q^{\alpha} < p^2 \iff \alpha < 2\log_q p \le 2 \cdot \frac{p}{2} = p$$

because we have:

$$\log_q p \le \frac{p}{2}$$
 for $q \ge 2$ and $p \ge 3$.
So,

$$\varphi_{s}(p^{2}) = p^{2} - Card \{1 \cdot p, 2 \cdot p, ..., (p - 1)p, p^{2}\} = p^{2} - p = \varphi(p^{2})$$

3. Proposition. For every $x \in N^*$ we have:

$$\varphi_{s}(\mathbf{x}) \leq \mathbf{x} - \tau(\mathbf{x}) + 1$$

where $\tau(x)$ is the number of the divisors of x.

Proof. From (1) it results that $\varphi_s(x) = x - \varphi_s^*(x)$, and of course, from the definition of φ_s^* and τ it results $\varphi_s^*(x) \ge \tau(x) - 1$. Then $\varphi_s(x) \le x - \tau(x) + 1$. Particularly, if x is a prime then $\varphi_s(x) \le x - 1$, because in this case $\tau(x) = 2$.

If x is a composite number, it results that $\phi_s(x) \le x - 2$.

4. Proposition. If p < q are two consecutive primes then :

 $\varphi_{S}(pq) = \varphi(pq).$

Proof. Evidently, $\varphi(pq) = (p - 1)(q - 1)$ and

 $\varphi_{s}(pq) = Card\{m \in \mathbb{N}^{*} / 0 \le m \le pq, (S(m), pq) = 1\}.$

Because p and q are consecutive primes and p < q it results that the multiples of p and q which are not greater than pq are exactly given by the set:

 $M = \{p, 2p, ..., p^2, (p + 1)p, ..., (q - 1)p, qp, q, 2q, ..., (p - 1)q\}.$

These are in number of p + q - 1.

Evidently, $(S(m), pq) \neq 1$ for $m \in \{p, 2p, ..., (p-1)p, p^2, q, 2q, ..., (p-1)q\}$. Let us calculate S(m) for $m \in \{(p+1)p, (p+2)p, ..., (q-1)p\}$. Evidently, (p+i, p) = 1 for $1 \leq i \leq q - p - 1$, and so [p+i, p] = p(p+i). It results that $S(p(p+i) = S([p, p+i]) = max\{S(p), S(p+i)\} = S(p)$. Indeed, to estimate S(p+i) let $p+i = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_h^{\alpha_h} < q < 2p$. Then $p_1^{\alpha_1} < p, p_2^{\alpha_2} < p, ..., p_h^{\alpha_h} < p$. It results that: $S(p+i) = S(p_j^{\alpha_1}) < S(p)$, for some $j = \overline{1, h}$. It results that:

 $(\mathbf{S}(\mathbf{p}(\mathbf{p}+\mathbf{i}),\,\mathbf{pq})=(\mathbf{p},\,\mathbf{pq})=\mathbf{p}\neq\mathbf{1}.$

In the following we shall prove that if $0 \le m \le pq$ and m is not a multiple of p or q then (S(m), pq) = 1.

It is said that if $m < p^2$ is not a multiple of p then (S(m), p) = 1.

If $m \le q^2$ is not a multiple of q then it results also (S(m), q) = 1.

Now, if $m < p^2$ (and of course $m < q^2$) is not a multiple either of p and q then from (S(m), p) = 1 and (S(m), q) = 1 it results (S(m), pq) = 1.

Finally, for $p^2 < m < pq < q^2$, with m not a multiple either of p and q, if the decomposition of m into primes is $m = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_s^{\alpha_s}$ then $S(m) = S(p_k^{\alpha_k}) < S(p) = p$ so (S(m), p) = 1.

Analogously, (S(m), q) = 1, and so (S(m), pq) = 1.

Consequently,

$$\varphi_{s}(pq) = pq - p - q + 1 = \varphi_{s}(pq).$$

5. Proposition

(i) If p > 2 is a prime number then $\omega_s(p) = 2$, $\omega_s(p^2) = p$.

(ii) If x is a composite number then $\omega_s(x) \ge 3$.

Proof. From the definition of the function ω_s it results that $\omega_s(p) = 2$.

If $1 \le m \le p^2$, from the condition that S(m) divides p^2 it results m = 1 or m = kp, with

 $k \le p - 1$, so :

 $m \in \{1, p, 2p, \dots, (p-1)p\} \text{ and } \omega_s(p^2) = p.$

If x is a composite number, let p be one of its prime divisors.

Then, of course, 1, p, $2p \in \{m \mid 0 \le m \le x\}$.

If p > 3 then :

S(1) = 1 divides x, S(p) = p divides x and S(2p) = S(p) = p divides x.

It results $\omega_s(x) \ge 3$.

If $x = 2^{\alpha}$, with $\alpha \ge 2$ then :

S(1) = 1 divides x, S(2) = 2 divides x and S(4) = 4 divides x,

so we have also $\omega_s(x) \ge 3$.

6. Proposition. For every positive integer x we have :

 $\omega_{\rm c}({\bf x}) \le {\bf x} - \varphi({\bf x}) + 1. \tag{2}$

Proof. We have $\varphi(x) = x$ - Card A, when

 $A = \{m \mid 0 \le m \le x, (m, x) \ne 1\}.$

Evidently, the inequality (2) is valid for all the prime numbers.

If x is a composite number it results that at least a proper divisor of m is also a divisor of

S(m) and of x. So $(m, x) \neq 1$ and consequently $m \in A$.

So, $\{m \mid 0 \le m \le x, S(m) \text{ divides } x\} \subset A \cup \{1\}$ and it results that :

Card { $m / 0 \le m \le x$, S(m) divides x} \le Card A - 1, or

 $\omega_{s}(x) \leq 1 + Card A$,

and from this it results (2).

7. Proposition. The equation $\omega_s(x) = \omega_s(x + 1)$ has not a solution between the prime numbers.

Proof. Indeed, if x is a prime then $\omega_s(x) = 2$ and because x + 1 is a composite number it results $\omega_s(x + 1) \ge 3$.

Let us observe that the above equation has solutions between the primes. For instance, $\omega_s(35) = \omega_s(36) = 11$.

8. Proposition. The function $\phi_s(x)$ has all the primes as local maximal points.

Proof. We have $\varphi_s(p) = p - 1$, $\varphi_s(p - 1) \le p - 3 \le \varphi_s(p)$ and $\varphi_s(p + 1) \le \varphi_s(p)$, because

p + 1 being a composite number has at least two divisors.

Let us mention now the following unsolved problems:

(UP₁) There exists $x \in N^*$ such that $\phi_s(x) < \phi(x)$.

 (UP_2) For all $x \in N^*$ is valid the inequality

 $\omega_{s}(x) \geq \tau(x)$

where $\tau(x)$ is the number of the divisors of x.

References

1. I. Balacenoiu, V. Seleacu - Some properties of Smarandache Function of the type I, Smarandache Function Journal, vol. 6 no 1, June 1995, 16-21.

2. P. Gronaz - A note on S(p'), Smarandache Function Journal V 2-3 no 1, 1993, 33.

Current Address:

University of Craiova, Department of Mathematics CRAIOVA (1100), ROMANIA