ON THREE NUMERICAL EUNCTIONS

by

1. Balacenoiu and V. Seleacu

In this paper we define the numerical functions $\varphi_{\mathrm{s}}, \varphi_{\mathrm{s}}{ }^{*}, \omega_{\mathrm{s}}$ and we prove some properties of these functions.

1. Definition. If $S(n)$ is the Smarandache function, and (m, n) is the greatest common divisor of m and n, then the functions $\varphi_{s}, \varphi_{s}{ }^{*}$ and ω_{s} are defined on the set N^{*} of the positive integers, with values in the set \mathbf{N} of all the non negative integers, such that:

$$
\begin{aligned}
& \varphi_{\mathrm{s}}(\mathrm{x})=\operatorname{Card}\left\{\mathrm{m} \in \mathbf{N}^{*} / 0<\mathrm{m} \leq \mathrm{x} .(\mathrm{S}(\mathrm{~m}), \mathrm{x})=1\right\} \\
& \varphi_{\mathrm{s}}^{*}(\mathrm{x})=\operatorname{Card}\left\{\mathrm{m} \in \mathbf{N}^{*} / 0<\mathrm{m} \leq \mathrm{x},(\mathrm{~S}(\mathrm{~m}), \mathrm{x}) \neq 1\right\} \\
& \omega_{\mathrm{s}}(\mathrm{x})=\operatorname{Card}\left\{\mathrm{m} \in \mathbf{N}^{*} / 0<\mathrm{m} \leq \mathrm{x}, \text { and } \mathrm{S}(\mathrm{~m}) \text { divides } \mathrm{x}\right\} .
\end{aligned}
$$

From this definition it results that:

$$
\begin{equation*}
\varphi_{s}(x)+\varphi_{s}{ }^{*}(x)=x \text { and } \omega_{s}(x) \leq \varphi_{s}{ }^{*}(x) \tag{1}
\end{equation*}
$$

for all $\mathbf{x} \in \mathbf{N}^{*}$.
2. Proposition. For every prime number $p \in \mathbf{N}^{*}$ we have
$\varphi_{s}(p)=p-1=\varphi(p), \varphi_{s}\left(p^{2}\right)=p^{2}-p=\varphi\left(p^{2}\right)$
where ω is Euler's totient function.
Proof. Of course, if p is a prime then for all integer a satisfying $0<a \leq p-1$ we have $(S(a), p)=1$, because $S(a) \leq a$. So, if we note $M_{1}(x)=\left\{m \in N^{*} / 0<m \leq p,(S(m), p)=1\right\}$ then $\mathrm{a} \subseteq \mathrm{M}_{1}(\mathrm{p})$.
$\therefore 1$ the same time, because $S(p)=p$, it results that $(S(p), p)=p \neq 1$ and so $p \notin M_{1}(p)$.
Then we have $\varphi_{s}(p)=p-1=\varphi(p)$.
The positive integers a, not greater than p^{2} and not belonging to the set $M_{1}\left(p^{2}\right)$ are: $\mathrm{p}, 2 \mathrm{p}, \ldots,(\mathrm{p}-1) \mathrm{p}, \mathrm{p}^{2}$.

For $p=2$ this assertion is evidently true. and if p is an odd prime number then for all $h<p$ it results $S(h \cdot p)=p$.

Now, if $m<p^{2}$ and $m=h p$ then $\left(S(m), p^{2}\right)=1$. Indeed. if for $m=q_{1}^{\alpha_{1}} \cdot q_{2}^{\alpha_{2}} \cdots q_{r}^{\alpha_{r}}, q_{i} \neq p$ we have $\left(S(m), p^{2}\right)=1$, then it exists a divisor q^{α} of m such that $S(m)=S\left(q^{\prime \alpha}\right)=q\left(\alpha-i_{\alpha}\right)$, with $i_{u} \in\left[0, \frac{\alpha-1}{q}\right]$

From $\left(q\left(\alpha-i_{\alpha}\right), p^{2}\right) \neq 1$ it results $\left(q\left(\alpha-i_{x}\right), p\right) \neq 1$ and because $q \neq p$ it results $\left(\alpha-i_{1}, p\right) \neq 1$, so $\left(\alpha-i_{12}, p\right)=p$. But p does not divide $\alpha-i_{1,}$ because $\alpha<p$.

Indeed. we have:

$$
\mathrm{q}^{u}<\mathrm{p}^{2} \Leftrightarrow \alpha<2 \log _{4} \mathrm{p} \leq 2 \cdot \frac{\mathrm{p}}{2}=\mathrm{p}
$$

because we have:

$$
\log _{4} p \leq \frac{p}{2} \text { for } q \geq 2 \text { and } p \geq 3
$$

So,

$$
\varphi_{s}\left(p^{2}\right)=p^{2}-\operatorname{Card}\left\{1 \cdot p, 2 \cdot p, \ldots,(p-1) p, p^{2}\right\}=p^{2}-p=\varphi\left(p^{2}\right)
$$

3. Proposition. For every $x \in N^{*}$ we have:

$$
\varphi_{s}(x) \leq x-\tau(x)+1
$$

where $\tau(x)$ is the number of the divisors of x.
Proof. From (1) it results that $\varphi_{\mathrm{s}}(\mathrm{x})=\mathrm{x}-\varphi_{\mathrm{s}}{ }^{*}(\mathrm{x})$, and of course, from the definition of $\varphi_{s}{ }^{*}$ and τ it results $\varphi_{S}{ }^{*}(x) \geq \tau(x)-1$. Then $\varphi_{s}(x) \leq x-\tau(x)+1$. Particularly, if x is a prime then $\varphi_{S}(x) \leq x-1$, because in this case $\tau(x)=2$.

If x is a composite number, it results that $\varphi_{S}(\mathrm{x}) \leq \mathrm{x}-2$.
4. Proposition. If $\mathrm{p}<\mathrm{q}$ are two consecutive primes then:

$$
\varphi_{s}(p q)=\varphi(p q)
$$

Proof. Evidently, $\varphi(p q)=(p-1)(q-1)$ and

$$
\varphi_{\mathrm{s}}(\mathrm{pq})=\operatorname{Card}\left\{\mathrm{m} \in \mathbf{N}^{*} / 0<\mathrm{m} \leq \mathrm{pq},(\mathrm{~S}(\mathrm{~m}), \mathrm{pq})=1\right\}
$$

Because p and q are consecutive primes and $p<q$ it results that the multiples of p and q which are not greater than pq are exactly given by the set:

$$
M=\left\{p, 2 p, \ldots, p^{2},(p+1) p, \ldots,(q-1) p, q p, q, 2 q, \ldots,(p-1) q\right\}
$$

These are in number of $\mathrm{p}+\mathrm{q}-1$.

Evidently, $(S(m), p q) \neq 1$ for $m \in\left\{p, 2 p, \ldots,(p-1) p, p^{2}, q, 2 q, \ldots,(p-1) q ;\right.$
Let us calculate $S(m)$ for $m \in\{(p+1) p,(p+2) p, \ldots,(q-1) p\}$
Evidently. $(p+i, p)=1$ for $l \leq i \leq q-p-1$, and so $[p+i, p]=p(p+i)$.
It results that $S(p(p+i)=S([p, p+i])=\max \{S(p), S(p+i)\}=S(p)$.
Indeed. to estimate $S(p+i)$ let $p+i=p_{1}^{u_{1}} \cdot p_{2}^{u_{2}} \cdots p_{h}^{u_{h}}<q<2 p$.
Then $p_{1}^{u_{1}}<p, p_{2}^{\alpha_{2}}<p, \ldots, p_{h}^{u_{h}}<p$.
It results that:
$S(p+i)=S\left(p_{j}^{\alpha_{1}}\right)<S(p)$, for some $j=\overline{1, h}$.
It results that:
$(S(p(p+i), p q)=(p, p q)=p \neq 1$.
In the following we shall prove that if $0<\mathrm{m} \leq \mathrm{pq}$ and m is not a multiple of p or q then $(\mathrm{S}(\mathrm{m}), \mathrm{pq})=1$.

It is said that if $m<p^{2}$ is not a multiple of p then $(S(m), p)=1$.
If $m \leq q^{2}$ is not a multiple of q then it results also $(S(m), q)=1$.
Now, if $m<p^{2}$ (and of course $m<q^{2}$) is not a multiple either of p and q then from $(S(m), p)=1$ and $(S(m), q)=1$ it results $(S(m), p q)=1$.

Finally, for $\mathrm{p}^{2}<\mathrm{m}<\mathrm{pq}<\mathrm{q}^{2}$, with m not a multiple either of p and q , if the decomposition of m into primes is $m=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$ then $S(m)=S\left(p_{k}^{\alpha_{k}}\right)<S(p)=p$ so $(\mathrm{S}(\mathrm{m}), \mathrm{p})=1$.

Analogously, $(\mathrm{S}(\mathrm{m}), \mathrm{q})=1$, and so $(\mathrm{S}(\mathrm{m}), \mathrm{pq})=1$.
Consequently,

$$
\varphi_{s}(p q)=p q-p-q+l=\varphi_{s}(p q)
$$

5. Proposition

(i) If $p>2$ is a prime number then $\omega_{s}(p)=2, \omega_{s}\left(p^{2}\right)=p$.
(ii) If x is a composite number then $\omega_{\mathrm{s}}(\mathrm{x}) \geq 3$.

Proof. From the definition of the function ω_{s} it results that $\omega_{s}(p)=2$.

If $\mathrm{l} \leq \mathrm{m} \leq \mathrm{p}^{2}$.from the condition that $\mathrm{S}(\mathrm{m})$ divides p^{2} it results $\mathrm{m}=1$ or $\mathrm{m}=\mathrm{kp}$, with

$$
k \leq p-1 . s o:
$$

$$
m \in\{1, p, 2 p, \ldots,(p-1) p\} \quad \text { and } \quad \omega_{s}\left(p^{2}\right)=p
$$

If X is a composite number. let p be one of its prime divisors.
Then of course, $1, p, 2 p \in\{m / 0<m \leq x\}$.
If $p>3$ then :
$S(1)=1$ divides $x, S(p)=p$ divides x and $S(2 p)=S(p)=p$ divides x.
It rezults $\omega_{s}(x) \geq 3$.
If $x=2^{\alpha}$, with $\alpha \geq 2$ then
$S(1)=1$ divides $x, S(2)=2$ divides x and $S(4)=4$ divides x,
so we have also $\omega_{s}(x) \geq 3$.
6. Proposition. For every positive integer x we have :
$\omega_{s}(\mathrm{x}) \leq \mathrm{x}-\varphi(\mathrm{x})+1$.
Proof. We have $\varphi(x)=x-\operatorname{Card} A$, when

$$
A=\{m / 0<m \leq x,(m, x) \neq 1\}
$$

Evidently, the inequality (2) is valid for all the prime numbers.
If x is a composite number it results that at least a proper divisor of m is also a divisor of $S(m)$ and of x. So $(m, x) \neq l$ and consequently $m \in A$.

So. $\{\mathrm{m} / 0<\mathrm{m} \leq \mathrm{x}, \mathrm{S}(\mathrm{m})$ divides x$\} \subset \mathrm{A} \cup\{1\}$ and it results that :
Card $\{\mathrm{m} / 0<\mathrm{m} \leq \mathrm{x}, \mathrm{S}(\mathrm{m})$ divides x$\} \leq \operatorname{Card} \mathrm{A}-1$, or
$\omega_{s}(\mathrm{x}) \leq 1+\operatorname{Card} \mathrm{A}$,
and from this it results (2).
7. Proposition. The equation $\omega_{s}(x)=\omega_{s}(x+1)$ has not a solution between the prime numbers.

Proof. Indeed, if x is a prime then $\omega_{s}(\mathrm{x})=2$ and because $\mathrm{x}+1$ is a composite number it results $\omega_{s}(x+1) \geq 3$.

Let us observe that the above equation has solutions between the primes. For instance. $\omega_{s}(35)=\omega_{s}(36)=11$
8. Proposition. The function $\varphi_{s}(x)$ has all the primes as local maximal points.

Proof. We have $\varphi_{s}(p)=p-1, \varphi_{s}(p-1) \leq p-3<\varphi_{s}(p)$ and $\varphi_{s}(p+1) \leq \varphi_{s}(p)$, because $p+1$ being a composite number has at least two divisors.

Let us mention now the following unsolved problems:
($\mathbf{U P}_{1}$) There exists $\mathrm{x} \in \mathbf{N}^{*}$ such that $\varphi_{s}(\mathbf{x})<\varphi(x)$.
($\mathbf{U P}_{\mathbf{z}}$) For all $\mathrm{x} \in \mathbf{N}^{*}$ is valid the inequality

$$
\omega_{s}(x) \geq \tau(x)
$$

where $\tau(x)$ is the number of the divisors of x.

References

1. I. Balacenoiu, V. Seleacu - Some properties of Smarandache Finction of the type I, Smarandache Function Journal, vol. 6 no 1, June 1995, 16-21
2. P. Gronaz - A note on $S\left(p^{\prime}\right)$, Smarandache Function Journal V 2-3 no 1, 1993, 33.

Current Address:

