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1. The Smarandache function is a characterization of factorials, since S(k!) = k, and 

is connected to values of other arithmetical functions at factorials. Indeed, the equation 

S(x) = k (k ~ 1 given) (1) 

has d(k!) - d((k - I)!) solutions, where d(n) denotes the number of divisors of n. This 

follows from {x: S(x) = k} = {x: xlk!, x t (k - I)!}. Thus, equation (1) always has 

at least a solution, if d(k!) > d((k - I)!) for k ~ 2. In what follows, we shall prove this 

inequality, and in fact we will consider the arithmetical functions y, <7, d, w, 0 at factorials. 

Here y( n) = Euler's arithmetical function, <7( n) = sum of divisors of n, w( n) = number 

of distinct prime factors of n, O( n) = number of total divisors of n. As it is well known, 
r 

we have y( 1) = d(1) = 1. while w(l) = O( 1) = 0, and for 1 < IT pf; (ai ~ 1, Pi distinct 
i=l 

primes) one has 

y( n) = n IT (1 -~) , 
i=l p, 

r a,+l 

0"( n) = IT Pi - 1 , 
P -1 

i=l ' 

w(n) = r, 

r 

O(n) = Laj, 
j=l 
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r 

d(n) = II(ai + 1). (2) 
i=l 

The functions y, (7, d are multiplicative, w is additive, while n is totally additive, i.e. 

y, (7, d satisfy the functional equation f(mn) = f(m )f(n) for (m, n) = 1, while w, n satisfy 

the equation g( mn) = g( m) + g( n) for (m, n) = 1 in case of w, and for all m, n is case of 

n (see [1 D. 
r r 

2. Let m = II pfi, n = II pfi (ai, (Ji 2: 0) be the canonical factorizations of m and n. 
i=l i=l 

(Here some ai or (Ji can take the values 0, too). Then 

r r 

d(mn) = II(ai + (Ji + 1) 2: II({Ji + 1) 
i=l ;=1 

with equality only if CYi = 0 for all i. Thus: 

d(mn) 2: d(n) (3) 

for all m, n, with equality only for m = 1. 
r r r 

Since II (ai + (Ji + 1) ::; II (ai + 1) II ({Ji + 1), we get the relation 
i=l ;=1 i=l 

d(mn) ::; d(m)d(n) (4) 

with equality only for (n, m) = 1. 

Let now m = k, n = (k - 1)~ for k 2: 2. Then relation (3) gives 

d(k~) > d((k -1)~) for all k 2: 2, (.5) 

thus proving the assertion that equation (1) always has at least a solution (for k = lone 

can take x = 1). 

"Vith the same substitutions, relation (4) yields 

d(k!) ::; d((k -l)!)d(k) for k 2: 2 (6) 
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Let k = p (prime) in (6). Since ((p - 1)!,p) = 1, we have equality in (6): 

d(p!) = 2 
d((p - I)!) , 

p pnme. (7) 

S(k!) k 
3. Since S(k!)jk! -+ 0, S((k _ I)!) = k _ 1 -+ 1 as k -+ ee, one may ask the similar 

prohlems for such limits for other arithmetical functions. 

It is well known that 

O"(n!) 
-,- -+ 00 as n -+ 00. 

n; 

k 
In fact, this follows from O"(k) = L d = L d' so 

dlk dlk 

O"(n!) 1 1 1 
-,-' = L -d ~ 1 + 2 + ... + - > log n, 

n. d' , n In. 

as it is known. 

From the known inequality ([1]) cp(n)O"(n) ~ n2 it follows 

n! 
so -(-I) -+ 00, implying 

cp n. 

n 0"( n) 
-->-
cp( n) - n ' 

cp(n!) 
-,- -+ 0 as n -+ 00. 

n. 

(8) 

(9) 

Since cp(n) > d(n) for n > 30 (see [2]), we have cp(n!) > d(n!) for n! > 30 (i.e. n ~ 5), 

so, by (9) 

d( n!) 
-,- ---+ 0 as n ---+ ee. 

n. 
(10) 

In fact, much stronger relation is true, since d( ~) ---+ 0 for each ~ > 0 (n ---+ IX) (see 
n-

[1 F d(n!) cp(n!) i ') , • 

1 ). rom -- < -- and the ahove remark on 0"\ n; > n. log n. I t follows that 
n! n! 

. d(n!) 
11m sup -,-log n ~ l. 

n->oo n. 
(11 ) 
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These relations are obtained by very elementary arguments. From the inequality 

r.p(n)(w(n) + 1) ~ n (see [2]) we get 

w(n!) -t 00 as n -t 00 (12) 

and, since D( s) ~ w( s), we have 

D(n!) -t 00 as n -t 00. (13) 

From the inequality nd(n) ~ r.p(n) + CT(n) (see [2]), and (8), (9) we have 

d( n!) -t 00 as n -t 00. (14) 

This follows also from the known inequality r.p( n )d( n) ~ nand (9), by replacing n with 

n!. From CT(mn) ~ mCT(n) (see [3]) with n = (k -I)!, m = k we get 

CT((k _ I)!) ~ k (k ~ 2) (15 ) 

and, since CT( mn) :::; CT( m )CT( n), by the same argument 

CT(k!) 
CT((k _ I)!) :::; CT(k) (k ~ 2). (16) 

Clearly, relation (15) implies 

. CT(k!) 
lIm = +00. 

k-+co CT( (k - 1) ~) 
( 17) 

From :.p( m )r.p( n) :::; 'P( mn) :::; mr.p( n), we get, by the above remarks, that 

'~(k) < 'P(k!) < k (k> ?) 
Y - r.p((k - I)!) -, - - (18) 

implying, by y( k) ~ 00 as k ~ 00 (e.g. from r.p( k) > v'k for k > 6) that 

. r.p(k!) 
hm ((k )' = +00. k-+co 'P - 1 . 

(19) 
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By writing a(k!) - a((k -1)!) = a((k -1)!) [a((:(:!i)!) -1], from (17) and 

a((k - 1)!) ~ 00 as k ~ 00, we trivially have: 

lim [a(k!) - a((k - 1)!)] = +00. 
k~oo 

In completely analogous way, we can write: 

lim [<p(k!) - <p((k - 1)!)] = +00. 
k~oo 

(20) 

(21 ) 

4. Let us remark that for k = p (prime), clearly ((k - 1)!,k) 1, while for k = 

composite, all prime factors of k are also prime factors of (k - 1)!' Thus 

{ 

w((k - 1)!k) = w((k - 1)!) + w(k) 
w(k!) = 

w((k - 1)!) 

if k is prime 

if k is composite (k ~ 2). 

Thus 

{ 

1, 
w(k!) - w((k - 1)!) = 

0, 

for k = prime 

for k = composite 

Thus we have 

limsup[w(k!) -w((k -1)!)] = 1 
k~oo 

lim inf[w(k!) - w((k - 1)!)] = ° 
k~oo 

Let pn be the nth prime number. From (22) we get 

w(k!) { _1_, if k = Pn 
_---'----'----_ _ 1 = n - 1 
w((k-1)!) O.fk . 

,1 = composIte. 

Thus, we get 

1
. w(k!) 
1m = 1. 

k-+oo w((k - 1)!) 

The function D is totally additive, so 

D(k!) = D((k - 1)!k) = D((k - 1)1) + D(k), 
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(22) 

(23) 

(24) 



D(k!) - D((k - I)!) = D(k). (25) 

This implies 

limsup[D(k!) - D((k -I)!)] = +00 (26) 
k~oo 

(take e.g. k = 2m and let m -t (0), and 

lim inf[D(k!) - D((k - I)!)] = 2 
k~oo 

(take k = prime). 

For D(k!)jD((k -I)!) we must evaluate 

D(k) D(k) 
----'---'--- - -------'----'-----
D((k - I)!) D(I) + D(2) + ... + D(k - 1)· 

Since D(k) ::; ~:: ~ and by the theorem of Hardy and Ramanujan (see [1]) we have 

L D(n) rv xloglogx (x -t (0) 
n<x 

log k k b . so, smce -t 0 as -t 00, we 0 tam 
(k - 1) log log(k - 1) 

. D(k!) 
}~~ D((k - I)!) = 1. 

(27) 

5. Inequality (18) applied for k = p (prime) implies 

. 1 y(p!) 
hm _. = 1. 
p~oop y((p-l)!) 

(28) 

This follows by y(p) = p - 1. On the other hand, let k > 4 be composite. Then, 

it is known (see [1]) that kl(k - I)!. So y(k!) = y((k - 1)!k) = ky((k - I)!), since 

y(mn) = my(n) if min. In view of (28), we can write 

. 1 y(k!) 
hm _. = l. 
k~oo k y((k - I)!) 

(29) 
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For the function a, by (15) and (16), we have for k = p (prime) that p ~ (a(p!) ~ 
a (p - 1 )!) 

a(p) = p + 1, yielding 

lim ~ . a(p!) = 1. 
p-too p a((p - I)!) 

(30) 

In fact, in view of (15) this implies that 

. . 1 a(k!) 
he~f k . a((k _ I)!) = 1. (31) 

By (6) and (7) we easily obtain 

. d(k!) 
h~:p d(k)d((k _ I)!) = 1. (32) 

In fact, inequality (6) can be improved, if we remark that for k = p (prime) we have 

d(k!) = d((k - 1)!) ·2, while for k = composite, k > 4, it is known that kl(k - I)!. vVe 

apply the following 

Lemma. If nlm, then 

_d(_m_n_) < _d(_n 2_) . 
d(m) - d(n) 

(33) 

Proof. Let m = II po. II l, n = II po.I (0:' ~ 0:) be the prime factorizations of m and 

n, where nlm. Then 

d(mn) = I1(0: + 0:' + 1) IICB + 1) = II (0: + c/ + 1) . 
d(m) II(o: + 1) IIU3 + 1) 0: + 1 

',~ ~ow. 0: + 0:' + 1 < 20:' + 1 l~ ~ 0:' ~ 0: as an easy calculations verifies. This immedi-
0:+1 - 0:'+1 -

ately implies relation (33). 

By selecting now n = k, m = (k - 1)~, k > 4 composite we can deduce from (33): 

_d....:..( k_!),- < _d(_k2_) 
d((k - I)!) - d(k)· 

(34) 

By (4) we can write d(k2) < (d(k))2, so (34) represents indeed. a refinement of relation 

(6) . 

93 



References 

[1] T.M. Apostol, An introduction to analytic number theory, Springer Verlag, 1976. 

[2] J. Sandor, Some diophantine equations for particular arithmetic functions (Roma

nian), Univ. Timi§oara, Seminarul de teoria structurilor, No.53, 1989, pp.1-10. 

[3] J. Sandor, On the composition of some arithmetic functions, Studia Univ. Babe§

Bolyai Math. 34(1989), 7-14. 

94 




