On values of arithmetical functions at factorials I

J. Sándor

Babeş-Bolyai University, 3400 Cluj-Napoca, Romania

1. The Smarandache function is a characterization of factorials, since S(k!) = k, and is connected to values of other arithmetical functions at factorials. Indeed, the equation

$$S(x) = k \quad (k \ge 1 \text{ given}) \tag{1}$$

has d(k!) - d((k-1)!) solutions, where d(n) denotes the number of divisors of n. This follows from $\{x : S(x) = k\} = \{x : x | k!, x \nmid (k-1)!\}$. Thus, equation (1) always has at least a solution, if d(k!) > d((k-1)!) for $k \ge 2$. In what follows, we shall prove this inequality, and in fact we will consider the arithmetical functions $\varphi, \sigma, d, \omega, \Omega$ at factorials. Here $\varphi(n) =$ Euler's arithmetical function, $\sigma(n) =$ sum of divisors of n, $\omega(n) =$ number of distinct prime factors of n, $\Omega(n) =$ number of total divisors of n. As it is well known, we have $\varphi(1) = d(1) = 1$, while $\omega(1) = \Omega(1) = 0$, and for $1 < \prod_{i=1}^{r} p_i^{a_i}$ ($a_i \ge 1$, p_i distinct primes) one has

$$\varphi(n) = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right),$$

$$\sigma(n) = \prod_{i=1}^{r} \frac{p_i^{a_i+1} - 1}{p_i - 1},$$

$$\omega(n) = r,$$

$$\Omega(n) = \sum_{i=1}^{r} a_i,$$

$$d(n) = \prod_{i=1}^{r} (a_i + 1).$$
(2)

The functions φ, σ, d are multiplicative, ω is additive, while Ω is totally additive, i.e. φ, σ, d satisfy the functional equation f(mn) = f(m)f(n) for (m, n) = 1, while ω, Ω satisfy the equation g(mn) = g(m) + g(n) for (m, n) = 1 in case of ω , and for all m, n is case of Ω (see [1]).

2. Let $m = \prod_{i=1}^{r} p_i^{\alpha_i}$, $n = \prod_{i=1}^{r} p_i^{\beta_i}$ $(\alpha_i, \beta_i \ge 0)$ be the canonical factorizations of m and n.

(Here some α_i or β_i can take the values 0, too). Then

$$d(mn) = \prod_{i=1}^{r} (\alpha_i + \beta_i + 1) \ge \prod_{i=1}^{r} (\beta_i + 1)$$

with equality only if $\alpha_i = 0$ for all *i*. Thus:

$$d(mn) \ge d(n) \tag{3}$$

for all m, n, with equality only for m = 1.

Since
$$\prod_{i=1}^{r} (\alpha_i + \beta_i + 1) \le \prod_{i=1}^{r} (\alpha_i + 1) \prod_{i=1}^{r} (\beta_i + 1)$$
, we get the relation
$$d(mn) \le d(m)d(n)$$
(4)

with equality only for (n, m) = 1.

Let now m = k, n = (k - 1)! for $k \ge 2$. Then relation (3) gives

$$d(k!) > d((k-1)!)$$
 for all $k \ge 2$, (5)

thus proving the assertion that equation (1) always has at least a solution (for k = 1 one can take x = 1).

With the same substitutions, relation (4) yields

$$d(k!) \le d((k-1)!)d(k) \text{ for } k \ge 2$$
(6)

Let k = p (prime) in (6). Since ((p-1)!, p) = 1, we have equality in (6):

$$\frac{d(p!)}{d((p-1)!)} = 2, \quad p \text{ prime.}$$

$$\tag{7}$$

3. Since $S(k!)/k! \to 0$, $\frac{S(k!)}{S((k-1)!)} = \frac{k}{k-1} \to 1$ as $k \to \infty$, one may ask the similar

problems for such limits for other arithmetical functions.

It is well known that

$$\frac{\sigma(n!)}{n!} \to \infty \text{ as } n \to \infty.$$
(8)

In fact, this follows from $\sigma(k) = \sum_{d|k} d = \sum_{d|k} \frac{k}{d}$, so

$$\frac{\sigma(n!)}{n!} = \sum_{d|n!} \frac{1}{d} \ge 1 + \frac{1}{2} + \ldots + \frac{1}{n} > \log n,$$

as it is known.

From the known inequality ([1]) $\varphi(n)\sigma(n) \leq n^2$ it follows

$$\frac{n}{\varphi(n)} \ge \frac{\sigma(n)}{n}$$

so
$$\frac{n!}{\varphi(n!)} \to \infty$$
, implying
 $\frac{\varphi(n!)}{n!} \to 0 \text{ as } n \to \infty.$ (9)

Since $\varphi(n) > d(n)$ for n > 30 (see [2]), we have $\varphi(n!) > d(n!)$ for n! > 30 (i.e. $n \ge 5$), so, by (9)

$$\frac{d(n!)}{n!} \to 0 \text{ as } n \to \infty.$$
(10)

In fact, much stronger relation is true, since $\frac{d(n)}{n^{\varepsilon}} \to 0$ for each $\varepsilon > 0$ $(n \to \infty)$ (see [1]). From $\frac{d(n!)}{n!} < \frac{\varphi(n!)}{n!}$ and the above remark on $\sigma(n!) > n! \log n$, it follows that

$$\limsup_{n \to \infty} \frac{d(n!)}{n!} \log n \le 1.$$
(11)

These relations are obtained by very elementary arguments. From the inequality $\varphi(n)(\omega(n)+1) \ge n$ (see [2]) we get

$$\omega(n!) \to \infty \text{ as } n \to \infty \tag{12}$$

and, since $\Omega(s) \ge \omega(s)$, we have

$$\Omega(n!) \to \infty \text{ as } n \to \infty.$$
(13)

From the inequality $nd(n) \ge \varphi(n) + \sigma(n)$ (see [2]), and (8), (9) we have

$$d(n!) \to \infty \text{ as } n \to \infty.$$
(14)

This follows also from the known inequality $\varphi(n)d(n) \ge n$ and (9), by replacing n with n!. From $\sigma(mn) \ge m\sigma(n)$ (see [3]) with n = (k-1)!, m = k we get

$$\frac{\sigma(k!)}{\sigma((k-1)!)} \ge k \quad (k \ge 2) \tag{15}$$

and, since $\sigma(mn) \leq \sigma(m)\sigma(n)$, by the same argument

$$\frac{\sigma(k!)}{\sigma((k-1)!)} \le \sigma(k) \quad (k \ge 2).$$
(16)

Clearly, relation (15) implies

$$\lim_{k \to \infty} \frac{\sigma(k!)}{\sigma((k-1)!)} = +\infty.$$
(17)

From $\varphi(m)\varphi(n) \leq \varphi(mn) \leq m\varphi(n)$, we get, by the above remarks, that

$$\varphi(k) \le \frac{\varphi(k!)}{\varphi((k-1)!)} \le k, \quad (k \ge 2)$$
(18)

implying, by $\varphi(k) \to \infty$ as $k \to \infty$ (e.g. from $\varphi(k) > \sqrt{k}$ for k > 6) that

$$\lim_{k \to \infty} \frac{\varphi(k!)}{\varphi((k-1)!)} = +\infty.$$
(19)

By writing $\sigma(k!) - \sigma((k-1)!) = \sigma((k-1)!) \left[\frac{\sigma(k!)}{\sigma((k-1)!)} - 1 \right]$, from (17) and $\sigma((k-1)!) \to \infty$ as $k \to \infty$, we trivially have:

$$\lim_{k \to \infty} [\sigma(k!) - \sigma((k-1)!)] = +\infty.$$
⁽²⁰⁾

In completely analogous way, we can write:

$$\lim_{k \to \infty} [\varphi(k!) - \varphi((k-1)!)] = +\infty.$$
⁽²¹⁾

4. Let us remark that for k = p (prime), clearly ((k - 1)!, k) = 1, while for k = composite, all prime factors of k are also prime factors of (k - 1)!. Thus

$$\omega(k!) = \begin{cases} \omega((k-1)!k) = \omega((k-1)!) + \omega(k) & \text{if } k \text{ is prime} \\ \omega((k-1)!) & \text{if } k \text{ is composite} \ (k \ge 2). \end{cases}$$

Thus

$$\omega(k!) - \omega((k-1)!) = \begin{cases} 1, & \text{for } k = \text{prime} \\ 0, & \text{for } k = \text{composite} \end{cases}$$
(22)

Thus we have

$$\lim_{k \to \infty} \sup[\omega(k!) - \omega((k-1)!)] = 1$$

$$\lim_{k \to \infty} \inf[\omega(k!) - \omega((k-1)!)] = 0$$
(23)

Let p_n be the *n*th prime number. From (22) we get

$$\frac{\omega(k!)}{\omega((k-1)!)} - 1 = \begin{cases} \frac{1}{n-1}, & \text{if } k = p_n \\ 0, & \text{if } k = \text{composite} \end{cases}$$

Thus, we get

$$\lim_{k \to \infty} \frac{\omega(k!)}{\omega((k-1)!)} = 1.$$
(24)

The function Ω is totally additive, so

$$\Omega(k!) = \Omega((k-1)!k) = \Omega((k-1)!) + \Omega(k),$$

giving

$$\Omega(k!) - \Omega((k-1)!) = \Omega(k).$$
⁽²⁵⁾

This implies

$$\limsup_{k \to \infty} [\Omega(k!) - \Omega((k-1)!)] = +\infty$$
⁽²⁶⁾

(take e.g. $k = 2^m$ and let $m \to \infty$), and

$$\liminf_{k \to \infty} [\Omega(k!) - \Omega((k-1)!)] = 2$$

(take k = prime).

For $\Omega(k!)/\Omega((k-1)!)$ we must evaluate

$$\frac{\Omega(k)}{\Omega((k-1)!)} = \frac{\Omega(k)}{\Omega(1) + \Omega(2) + \ldots + \Omega(k-1)}$$

Since $\Omega(k) \leq \frac{\log k}{\log 2}$ and by the theorem of Hardy and Ramanujan (see [1]) we have

$$\sum_{n \le x} \Omega(n) \sim x \log \log x \quad (x \to \infty)$$

so, since $\frac{\log k}{(k-1)\log\log(k-1)} \to 0$ as $k \to \infty$, we obtain

$$\lim_{k \to \infty} \frac{\Omega(k!)}{\Omega((k-1)!)} = 1.$$
(27)

5. Inequality (18) applied for k = p (prime) implies

$$\lim_{p \to \infty} \frac{1}{p} \cdot \frac{\varphi(p!)}{\varphi((p-1)!)} = 1.$$
(28)

This follows by $\varphi(p) = p - 1$. On the other hand, let k > 4 be composite. Then, it is known (see [1]) that k|(k-1)!. So $\varphi(k!) = \varphi((k-1)!k) = k\varphi((k-1)!)$, since $\varphi(mn) = m\varphi(n)$ if m|n. In view of (28), we can write

$$\lim_{k \to \infty} \frac{1}{k} \cdot \frac{\varphi(k!)}{\varphi((k-1)!)} = 1.$$
⁽²⁹⁾

For the function σ , by (15) and (16), we have for k = p (prime) that $p \leq \frac{\sigma(p!)}{\sigma((p-1)!)} \leq \sigma(p) = p + 1$, yielding

$$\lim_{p \to \infty} \frac{1}{p} \cdot \frac{\sigma(p!)}{\sigma((p-1)!)} = 1.$$
(30)

In fact, in view of (15) this implies that

$$\liminf_{k \to \infty} \frac{1}{k} \cdot \frac{\sigma(k!)}{\sigma((k-1)!)} = 1.$$
(31)

By (6) and (7) we easily obtain

$$\limsup_{k \to \infty} \frac{d(k!)}{d(k)d((k-1)!)} = 1.$$
 (32)

In fact, inequality (6) can be improved, if we remark that for k = p (prime) we have $d(k!) = d((k-1)!) \cdot 2$, while for k = composite, k > 4, it is known that k|(k-1)!. We apply the following

Lemma. If $n \mid m$, then

$$\frac{d(mn)}{d(m)} \le \frac{d(n^2)}{d(n)}.$$
(33)

Proof. Let $m = \prod p^{\alpha} \prod q^{\beta}$, $n = \prod p^{\alpha'}$ ($\alpha' \leq \alpha$) be the prime factorizations of m and n, where n|m. Then

$$\frac{d(mn)}{d(m)} = \frac{\prod(\alpha + \alpha' + 1)\prod(\beta + 1)}{\prod(\alpha + 1)\prod(\beta + 1)} = \prod\left(\frac{\alpha + \alpha' + 1}{\alpha + 1}\right).$$

Now $\frac{\alpha + \alpha' + 1}{\alpha + 1} \leq \frac{2\alpha' + 1}{\alpha' + 1} \Leftrightarrow \alpha' \leq \alpha$ as an easy calculations verifies. This immediately implies relation (33).

By selecting now n = k, m = (k - 1)!, k > 4 composite we can deduce from (33):

$$\frac{d(k!)}{d((k-1)!)} \le \frac{d(k^2)}{d(k)}.$$
(34)

By (4) we can write $d(k^2) < (d(k))^2$, so (34) represents indeed, a refinement of relation (6).

References

- [1] T.M. Apostol, An introduction to analytic number theory, Springer Verlag, 1976.
- [2] J. Sándor, Some diophantine equations for particular arithmetic functions (Romanian), Univ. Timişoara, Seminarul de teoria structurilor, No.53, 1989, pp.1-10.
- [3] J. Sándor, On the composition of some arithmetic functions, Studia Univ. Babeş-Bolyai Math. 34(1989), 7-14.