On values of arithmetical functions at factorials I

J. Sándor

Babes-Bolyai University, 3400 Cluj-Napoca, Romania

1. The Smarandache function is a characterization of factorials, since $S(k!)=k$, and is connected to values of other arithmetical functions at factorials. Indeed, the equation

$$
\begin{equation*}
S(x)=k \quad(k \geq 1 \text { given }) \tag{1}
\end{equation*}
$$

has $d(k!)-d((k-1)!)$ solutions, where $d(n)$ denotes the number of divisors of n. This follows from $\{x: S(x)=k\}=\{x: x \mid k!, x \nmid(k-1)!\}$. Thus, equation (1) always has at least a solution, if $d(k!)>d((k-1)!)$ for $k \geq 2$. In what follows, we shall prove this inequality, and in fact we will consider the arithmetical functions $\varphi, \sigma, d, \omega, \Omega$ at factorials. Here $\varphi(n)=$ Euler's arithmetical function, $\sigma(n)=$ sum of divisors of $n, \omega(n)=$ number of distinct prime factors of $n, \Omega(n)=$ number of total divisors of n. As it is well known, we have $\varphi(1)=d(1)=1$, while $\omega(1)=\Omega(1)=0$, and for $1<\prod_{i=1}^{T} p_{i}^{a_{i}}\left(a_{i} \geq 1, p_{i}\right.$ distinct primes) one has

$$
\begin{gathered}
\varphi(n)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right) \\
\sigma(n)=\prod_{i=1}^{r} \frac{p_{i}^{a_{i}+1}-1}{p_{i}-1} \\
\omega(n)=r \\
\Omega(n)=\sum_{i=1}^{r} a_{i}
\end{gathered}
$$

$$
\begin{equation*}
d(n)=\prod_{i=1}^{r}\left(a_{i}+1\right) \tag{2}
\end{equation*}
$$

The functions φ, σ, d are multiplicative, ω is additive, while Ω is totally additive, i.e. φ, σ, d satisfy the functional equation $f(m n)=f(m) f(n)$ for $(m, n)=1$, while ω, Ω satisfy the equation $g(m n)=g(m)+g(n)$ for $(m, n)=1$ in case of ω, and for all m, n is case of Ω (see [1]).
2. Let $m=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}, n=\prod_{i=1}^{r} p_{i}^{\beta_{i}}\left(\alpha_{i}, \beta_{i} \geq 0\right)$ be the canonical factorizations of m and n. (Here some α_{i} or β_{i} can take the values 0 , too). Then

$$
d(m n)=\prod_{i=1}^{r}\left(\alpha_{i}+\beta_{i}+1\right) \geq \prod_{i=1}^{r}\left(\beta_{i}+1\right)
$$

with equality only if $\alpha_{i}=0$ for all i. Thus:

$$
\begin{equation*}
d(m n) \geq d(n) \tag{3}
\end{equation*}
$$

for all m, n, with equality only for $m=1$.

$$
\begin{gather*}
\text { Since } \prod_{i=1}^{r}\left(\alpha_{i}+\beta_{i}+1\right) \leq \prod_{i=1}^{r}\left(\alpha_{i}+1\right) \prod_{i=1}^{r}\left(\beta_{i}+1\right) \text {, we get the relation } \\
d(m n) \leq d(m) d(n) \tag{4}
\end{gather*}
$$

with equality only for $(n, m)=1$.
Let now $m=k, n=(k-1)$! for $k \geq 2$. Then relation (3) gives

$$
\begin{equation*}
d(k!)>d((k-1)!) \text { for all } k \geq 2, \tag{5}
\end{equation*}
$$

thus proving the assertion that equation (1) always has at least a solution (for $k=1$ one can take $x=1$).

With the same substitutions, relation (4) yields

$$
\begin{equation*}
d(k!) \leq d((k-1)!) d(k) \text { for } k \geq 2 \tag{6}
\end{equation*}
$$

Let $k=p$ (prime) in (6). Since $((p-1)!, p)=1$, we have equality in (6):

$$
\begin{equation*}
\frac{d(p!)}{d((p-1)!)}=2, \quad p \text { prime } \tag{7}
\end{equation*}
$$

3. Since $S(k!) / k!\rightarrow 0, \frac{S(k!)}{S((k-1)!)}=\frac{k}{k-1} \rightarrow 1$ as $k \rightarrow \infty$, one may ask the similar problems for such limits for other arithmetical functions.

It is well known that

$$
\begin{equation*}
\frac{\sigma(n!)}{n!} \rightarrow \infty \text { as } n \rightarrow \infty \tag{8}
\end{equation*}
$$

In fact, this follows from $\sigma(k)=\sum_{d \mid k} d=\sum_{d \mid k} \frac{k}{d}$, so

$$
\frac{\sigma(n!)}{n!}=\sum_{d \mid n!} \frac{1}{d} \geq 1+\frac{1}{2}+\ldots+\frac{1}{n}>\log n
$$

as it is known.
From the known inequality ([1]) $\varphi(n) \sigma(n) \leq n^{2}$ it follows

$$
\frac{n}{\varphi(n)} \geq \frac{\sigma(n)}{n}
$$

so $\frac{n!}{\varphi(n!)} \rightarrow \infty$, implying

$$
\begin{equation*}
\frac{\varphi(n!)}{n!} \rightarrow 0 \text { as } n \rightarrow \infty \tag{9}
\end{equation*}
$$

Since $\varphi(n)>d(n)$ for $n>30$ (see [2]), we have $\varphi(n!)>d(n!)$ for $n!>30$ (i.e. $n \geq 5$), so, by (9)

$$
\begin{equation*}
\frac{d(n!)}{n!} \rightarrow 0 \text { as } n \rightarrow \infty \tag{10}
\end{equation*}
$$

In fact, much stronger relation is true, since $\frac{d(n)}{n^{2}} \rightarrow 0$ for each $\varepsilon>0(n \rightarrow \infty)$ (see [1]). From $\frac{d(n!)}{n!}<\frac{\varphi(n!)}{n!}$ and the above remark on $\sigma(n!)>n!\log n$, it follows that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{d(n!)}{n!} \log n \leq 1 \tag{11}
\end{equation*}
$$

These relations are obtained by very elementary arguments. From the inequality $\varphi(n)(\omega(n)+1) \geq n$ (see [2]) we get

$$
\begin{equation*}
\omega(n!) \rightarrow \infty \text { as } n \rightarrow \infty \tag{12}
\end{equation*}
$$

and, since $\Omega(s) \geq \omega(s)$, we have

$$
\begin{equation*}
\Omega(n!) \rightarrow \infty \text { as } n \rightarrow \infty \tag{13}
\end{equation*}
$$

From the inequality $n d(n) \geq \varphi(n)+\sigma(n)$ (see [2]), and (8), (9) we have

$$
\begin{equation*}
d(n!) \rightarrow \infty \text { as } n \rightarrow \infty \tag{14}
\end{equation*}
$$

This follows also from the known inequality $\varphi(n) d(n) \geq n$ and (9), by replacing n with n !. From $\sigma(m n) \geq m \sigma(n)$ (see [3]) with $n=(k-1)$!, $m=k$ we get

$$
\begin{equation*}
\frac{\sigma(k!)}{\sigma((k-1)!)} \geq k \quad(k \geq 2) \tag{15}
\end{equation*}
$$

and, since $\sigma(m n) \leq \sigma(m) \sigma(n)$, by the same argument

$$
\begin{equation*}
\frac{\sigma(k!)}{\sigma((k-1)!)} \leq \sigma(k) \quad(k \geq 2) \tag{16}
\end{equation*}
$$

Clearly, relation (15) implies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\sigma(k!)}{\sigma((k-1)!)}=+\infty \tag{17}
\end{equation*}
$$

From $\varphi(m) \varphi(n) \leq \varphi(m n) \leq m \varphi(n)$, we get, by the above remarks, that

$$
\begin{equation*}
\varphi(k) \leq \frac{\varphi(k!)}{\varphi((k-1)!)} \leq k, \quad(k \geq 2) \tag{18}
\end{equation*}
$$

implying, by $\varphi(k) \rightarrow \infty$ as $k \rightarrow \infty$ (e.g. from $\varphi(k)>\sqrt{k}$ for $k>6$) that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\varphi(k!)}{\varphi((k-1)!}=+\infty \tag{19}
\end{equation*}
$$

By writing $\sigma(k!)-\sigma((k-1)!)=\sigma((k-1)!)\left[\frac{\sigma(k!)}{\sigma((k-1)!)}-1\right]$, from (17) and $\sigma((k-1)!) \rightarrow \infty$ as $k \rightarrow \infty$, we trivially have:

$$
\begin{equation*}
\lim _{k \rightarrow \infty}[\sigma(k!)-\sigma((k-1)!)]=+\infty . \tag{20}
\end{equation*}
$$

In completely analogous way, we can write:

$$
\begin{equation*}
\lim _{k \rightarrow \infty}[\varphi(k!)-\varphi((k-1)!)]=+\infty . \tag{21}
\end{equation*}
$$

4. Let us remark that for $k=p$ (prime), clearly $((k-1)!, k)=1$, while for $k=$ composite, all prime factors of k are also prime factors of $(k-1)!$. Thus

$$
\omega(k!)= \begin{cases}\omega((k-1)!k)=\omega((k-1)!)+\omega(k) & \text { if } k \text { is prime } \\ \omega((k-1)!) & \text { if } k \text { is composite }(k \geq 2)\end{cases}
$$

Thus

$$
\omega(k!)-\omega((k-1)!)= \begin{cases}1, & \text { for } k=\text { prime } \tag{22}\\ 0, & \text { for } k=\text { composite }\end{cases}
$$

Thus we have

$$
\begin{align*}
& \limsup _{k \rightarrow \infty}[\omega(k!)-\omega((k-1)!)]=1 \tag{23}\\
& \liminf _{k \rightarrow \infty}[\omega(k!)-\omega((k-1)!)]=0
\end{align*}
$$

Let p_{n} be the nth prime number. From (22) we get

$$
\frac{\omega(k!)}{\omega((k-1)!)}-1=\left\{\begin{array}{l}
\frac{1}{n-1}, \text { if } k=p_{n} \\
0, \text { if } k=\text { composite. }
\end{array}\right.
$$

Thus, we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\omega(k!)}{\omega((k-1)!)}=1 . \tag{24}
\end{equation*}
$$

The function Ω is totally additive, so

$$
\Omega(k!)=\Omega((k-1)!k)=\Omega((k-1)!)+\Omega(k),
$$

giving

$$
\begin{equation*}
\Omega(k!)-\Omega((k-1)!)=\Omega(k) \tag{25}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\underset{k \rightarrow \infty}{\limsup }[\Omega(k!)-\Omega((k-1)!)]=+\infty \tag{26}
\end{equation*}
$$

(take e.g. $k=2^{m}$ and let $m \rightarrow \infty$), and

$$
\liminf _{k \rightarrow \infty}[\Omega(k!)-\Omega((k-1)!)]=2
$$

(take $k=$ prime).
For $\Omega(k!) / \Omega((k-1)!)$ we must evaluate

$$
\frac{\Omega(k)}{\Omega((k-1)!)}=\frac{\Omega(k)}{\Omega(1)+\Omega(2)+\ldots+\Omega(k-1)} .
$$

Since $\Omega(k) \leq \frac{\log k}{\log 2}$ and by the theorem of Hardy and Ramanujan (see [1]) we have

$$
\sum_{n \leq x} \Omega(n) \sim x \log \log x \quad(x \rightarrow \infty)
$$

so, since $\frac{\log k}{(k-1) \log \log (k-1)} \rightarrow 0$ as $k \rightarrow \infty$, we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\Omega(k!)}{\Omega((k-1)!)}=1 \tag{27}
\end{equation*}
$$

5. Inequality (18) applied for $k=p$ (prime) implies

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{1}{p} \cdot \frac{\varphi(p!)}{\varphi((p-1)!)}=1 \tag{28}
\end{equation*}
$$

This follows by $\varphi(p)=p-1$. On the other hand, let $k>4$ be composite. Then, it is known (see [1]) that $k \mid(k-1)$!. So $\varphi(k!)=\varphi((k-1)!k)=k_{\varphi}((k-1)!)$, since $\varphi(m n)=m \varphi(n)$ if $m \mid n$. In view of (28), we can write

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{k} \cdot \frac{\varphi(k!)}{\varphi((k-1)!)}=1 \tag{29}
\end{equation*}
$$

For the function σ, by (15) and (16), we have for $k=p$ (prime) that $p \leq \frac{\sigma(p!)}{\sigma((p-1)!)} \leq$ $\sigma(p)=p+1$, yielding

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{1}{p} \cdot \frac{\sigma(p!)}{\sigma((p-1)!)}=1 \tag{30}
\end{equation*}
$$

In fact, in view of (15) this implies that

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \frac{1}{k} \cdot \frac{\sigma(k!)}{\sigma((k-1)!)}=1 \tag{31}
\end{equation*}
$$

By (6) and (7) we easily obtain

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \frac{d(k!)}{d(k) d((k-1)!)}=1 \tag{32}
\end{equation*}
$$

In fact, inequality (6) can be improved, if we remark that for $k=p$ (prime) we have $d(k!)=d((k-1)!) \cdot 2$, while for $k=$ composite, $k>4$, it is known that $k \mid(k-1)!$. We apply the following

Lemma. If $n \mid m$, then

$$
\begin{equation*}
\frac{d(m n)}{d(m)} \leq \frac{d\left(n^{2}\right)}{d(n)} \tag{33}
\end{equation*}
$$

Proof. Let $m=\prod p^{\alpha} \prod q^{\beta}, n=\prod p^{\alpha^{\prime}}\left(\alpha^{\prime} \leq \alpha\right)$ be the prime factorizations of m and n, where $n \mid m$. Then

$$
\frac{d(m n)}{d(m)}=\frac{\prod\left(\alpha+\alpha^{\prime}+1\right) \prod(\beta+1)}{\prod(\alpha+1) \prod(\beta+1)}=\Pi\left(\frac{\alpha+\alpha^{\prime}+1}{\alpha+1}\right)
$$

Now $\frac{\alpha+\alpha^{\prime}+1}{\alpha+1} \leq \frac{2 \alpha^{\prime}+1}{\alpha^{\prime}+1} \Leftrightarrow \alpha^{\prime} \leq \alpha$ as an easy calculations verifies. This immediately implies relation (33).

By selecting now $n=k, m=(k-1)!, k>4$ composite we can deduce from (33):

$$
\begin{equation*}
\frac{d(k!)}{d((k-1)!)} \leq \frac{d\left(k^{2}\right)}{d(k)} \tag{34}
\end{equation*}
$$

By (4) we can write $d\left(k^{2}\right)<(d(k))^{2}$, so (34) represents indeed, a refinement of relation (6).

References

[1] T.M. Apostol, An introduction to analytic number theory, Springer Verlag, 1976.
[2] J. Sándor, Some diophantine equations for particular arithmetic functions (Romanian), Univ. Timişoara, Seminarul de teoria structurilor, No.53, 1989, pp.1-10.
[3] J. Sándor, On the composition of some arithmetic functions, Studia Univ. BabeşBolyai Math. 34(1989), 7-14.

