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1. The Smarandache function is a characterization of factorials, since S(k!) = k, and

is connected to values of other arithmetical functions at factorials. Indeed, the equation
S(zy=k (k>1given) (1)

has d(k!) — d((k — 1)!) solutions, where d(n) denotes the number of divisors of n. This
follows from {z : S(z) = k} = {z : z|k!, = { (k —1)!}. Thus, equation (1) always has
at least a solution, if d(k!) > d({(k — 1)!) for k£ > 2. In what follows, we shall prove this
inequality, and in fact we will consider the arithmetical functions ¢, 0,d,w, 2 at factorials.
Here (n) = Euler’s arithmetical function, o(n) = sum of divisors of n, w(n) = number
of distinct prime factors of n, Q(n) = number of total divisors of n. As it is well known,
we have (1) = d(1) = 1, while w(1) = (1) = 0, and for 1 < ﬁp?‘ (a; > 1, p; distinct

=1

primes) one has

a;+1
i‘ 1
o(n) = | —
=1
w(n) =r,
Qn) = a;,
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d(n) = f[l(ai +1). (2)

The functions ¢, o, d are multiplicative, w is additive, while Q is totally additive, i.e.

, o, d satisfy the functional equation f(mn) = f(m)f(n) for (m,n) = 1, while w, (! satisfy

the equation g(mn) = g(m) + g(n) for (m,n) =1 in case of w, and for all m,n is case of
Q (see [1]).

2. Let m = ﬁpf", n= ]_:[p;‘ (e, B: > 0) be the canonical factorizations of m and n.

=1 =1
(Here some @; or 3; can take the values 0, too). Then
d(mn) = [J(ei + B: + 1) 2 [1(8: + 1)
=1

=1

with equality only if a; = 0 for all :. Thus:
d(mn) > d(n) 3)

for all m,n, with equality only for m = 1.
Since [J(ei + B +1) < [T(ei +1) [1(8: + 1), we get the relation
1=1 =1

=1

d(mn) < d(m)d(n) (4)

with equality only for (n,m) = 1.

Let now m =k, n = (k — 1)! for £ > 2. Then relation (3) gives

d(k!) > d((k — 1)) for all k > 2, (

(w1}
—

thus proving the assertion that equation (1) always has at least a solution (for k =1 one
can take z = 1).

With the same substitutions, relation (4) yields

d(k!y < d((k — 1)1)d(k) for k > 2 (6)
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Let k = p (prime) in (6). Since ((p — 1)},p) = 1, we have equality in (6):

d(p") )
=2, pprime (7)
d((p— 1))
. S(k!) k .
3. Since S(k!)/k! = 0 = — 1 as kK — oc, one may ask the similar

CS(k—DY) k-1

problems for such limits for other arithmetical functions.

It is well known that
a(n!)

— 00 as n — 0. (8)

k
In fact, this follows from o(k) =Y _d = 5 50
dlk dlk

1
>l4=-+...+—>logn,
n

al
DY}

a(nt)
oy
din!

n.

as it i1s known.

From the known inequality ([1]) ¢(n)o(n) < n? it follows

n > a(n)’
e(n) = n
n! ) i
SO 2(n]) — o0, implying |
p(nt) — 0 asn — oc. (9)
n!
Since (n) > d(n) for n > 30 (see [2]), we have o(n!) > d(n!) for n! > 30 (i.e. n > 3),
so, by (9)
d(n!
(n)—>0asn—>oc. (10)
n!
In fact, much stronger relation is true, since —= — 0 for each £ > 0 (n — oc) (see
! !
[1]). From d(n‘) < (’—9—(—72’—) and the above remark on o(n!) > n'logn. it follows that
n! n!
!
lim sup logn < 1. (11)
n—c0 n.

83



These relations are obtained by very elementary arguments. From the inequality

o(n)(w(n) +1) > n (see [2]) we get
w(n!) - 0o as n — oo
and, since Q(s) > w(s), we have
(n!) > coas n = co.
From the inequality nd(n) > ¢(n) + o(n) (see [2]), and (8), (9) we have

d(n!) - oo as n — oo.

(12)

(14)

This follows also from the known inequality ¢(n)d(n) > n and (9), by replacing n with

nl. From o(mn) > mo(n) (see [3]) with n = (k — 1)!, m = k we get

Tk 22

and, since o(mn) < o(m)o(n), by the same argument

ﬁk(f’)m <olk) (k>2).

Clearly, relation (15) implies

I okl
o o((k—1)) oo
From p(m)p(n) < p(mn) < mp(n), we get, by the above remarks, that

(k!

Ak Sk (k22)

w(k) <
implying, by ¢(k) — o0 as k — oo (e.g. from (k) > Vk for k > 6) that

o)
dm e - T
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By writing o(k!) — o((k — 1)!) = o((k — 1)!) [0((2(f!)1),) - 1] , from (17) and
o((k = 1)!) = oo as k — oo, we trivially have:
Jim [o(K!) — o((k — 1)!)] = +oo. (20)
In completely analogous way, we can write:
lim [(K!) — p((k — 1))} = +oc. (21)

k—o00

4. Let us remark that for £ = p (prime), clearly ((k — 1)!,k) = 1, while for ¥ =

composite, all prime factors of k are also prime factors of (k — 1)!. Thus

ety = | B D) =k = 1)+ wlk) ik is prime
w((k=1)1 if k is composite (k > 2).

Thus

1, for k = prime
wk) —w((k=1) = (22)
0, for k = composite

Thus we have

limsuplw(k!) —w((k = 1)Y)] =1
koo (23)

li;n inflw(k!) —w((k=1)!1)] =0
—00
Let p, be the nth prime number. From (22) we get

1
—1=¢{ n-=-1

w(k!) if k= pa

w((k—=1)1

0,if £ = composite.
Thus, we get

!
lim w(k)

S A 24

The function Q is totally additive, so
Q&) = Q((k = D)k) = Q(k = D) + Q(k),
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giving

QEN — (k- 1)) = Q(k). (25)
This implies
lim sup[Q(k!) — Q((k = 1)})] = +oc (26)
k—o0

(take e.g. k = 2™ and let m — o0), and
1ilxc'r1 inf[Q(K) - Q((k-1)N)] =2
(take k = prime).

For Q(k!)/Q((k — 1)!) we must evaluate

k) _ 0(k)

Q-1 o) +0@) +...+k-1)

gk
Since (k) < ioo 5 and by the theorem of Hardy and Ramanujan (see [1]) we have
og

> Q(n) ~ zloglogz (z = o0)
n<z
log k
(k—1)loglog(k — 1)

so, since

— 0 as k — oo, we obtain

Q(k!
lim (k1)

ST R e

5. Inequality (18) applied for k = p (prime) implies

This follows by ¢(p) = p — 1. On the other hand, let & > 4 be composite. Then,
it is known (see [1]) that k|(k — 1)!. So (kt) = @((k — 1)k) = ko((k = 1)1), since

w(mn) = mp(n) if min. In view of (28), we can write

1 plk)
lim

A A=y = - (29)

g2



!
For the function &, by (15) and (16), we have for £ = p (prime) that p < o i

—— = <
((p-1))
o(p) = p+ 1, yielding

1 o
lim = ———— = 1. 30
e (PR (30)
In fact, in view of (15) this implies that
N a(k!)
A N 31
ety Se—y (31)
By (6) and (7) we easily obtain
d(k!
limsup (k) = 1. (32)

2P Rk - D))

In fact, inequality (6) can be improved, if we remark that for £ = p (prime) we have
d(k!) = d((k — 1)!) - 2, while for k = composite, k > 4, it is known that k|(k — 1)!. We
apply the following

- Lemma. [f n|m, then

(33)

Proof. Let m =[] p° Hqﬁ, n = Hpa’ (! < a) be the prime factorizations of m and

n, where n|m. Then
d(mn) _ H(a-’ra’—i—l)n(ﬁ—%-l) =H<a+a/+1>
d(m) e+ DIIB+1) a+l /)
a+ao +1 < 2¢' +1

a+1 - o +1

Now & o < o as an easy calculations verifies. This immedi-
ately implies relation (33).

By selecting now n = k, m = (k — 1)!, k > 4 composite we can deduce from (33):

dk) _ d(k)
d(k—1)) = dk)"

(34)

By (4) we can write d(k?) < (d(k))?, so (34) represents indeed. a refinement of relation

(6).
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