OTHER SMARANDACHE TYPE FUNCTIONS

by J. Castillo
I40 \& Window Rock Rd. Lupton, Box 199, AZ 86508, USA

1) Let $f: N-->N$ be a strictly increasing function and x an element in N. Then:
a) Inferior Smarandache f-Part of x,

ISf(x) is the smallest k such that $f(k)<=x<f(k+1)$.
b) Superior Smarandache f-Part of x, ------------------------- $\operatorname{SSf}(x)$ is the smallest k such that $f(k)<x<=f(k+1)$.

Particular Cases:
a) Inferior Smarandache Prime Part:

For any positive real number n one defines $I S p(n)$ as the largest prime number less than or equal to n.
The first values of this function are (Smarandache[6] and Sloane[5]): $2,3,3,5,5,7,7,7,7,11,11,13,13,13,13,17,17,19,19,19,19,23,23$.
b) Superior Smarandache Prime Part: For any positive real number n one defines $S S p(n)$ as the smallest prime number greater than or equal to n. The first values of this function are (Smarandache[6] and Sloane[5]):
$2,2,2,3,5,5,7,7,11,11,11,11,13,13,17,17,17,17,19,19,23,23,23$.
c) Inferior Smarandache Square Part:

For any positive real number n one defines ISs(n) as the largest square less than or equal to n. The first values of this function are (Smarandache[6] and Sloane[5]): $0,1,1,1,4,4,4,4,4,9,9,9,9,9,9,9,16,16,16,16,16,16,16,16,16,25,25$.
b) Superior Smarandache Square Part: For any positive real number n one defines $S S s(n)$ as the smallest square greater than or equal to n. The first values of this function are (Smarandache[6] and Sloane[5]):
$0,1,4,4,4,9,9,9,9,9,16,16,16,16,16,16,16,25,25,25,25,25,25,25,25,25,36$.
d) Inferior Smarandache Cubic Part:

For any positive real number n one defines ISC(n) as the largest cube less than or equal to n. The first values of this function are (Smarandache[6] and Sloane [5]): $0,1,1,1,1,1,1,1,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,27,27,27,27$.
e) Superior Smarandache Cube Part: For any positive real number n one defines $S S s(n)$ as the smallest cube greater than or equal to n. The first values of this function are (Smarandache[6] and Sloane[5]):

```
0,1,8,8,8,8,8,8,8,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27.
    f) Inferior Smarandache Factorial Part:
        For any positive real number n one defines ISf(n) as the largest
        factorial less than or equal to n.
        The first values of this function are (Smarandache[6] and
        Sloane[5]):
1,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24,24,24,24,24.
    g) Superior Smarandache Factorial Part:
        For any positive real number n one defines SSf(n) as the smallest
        factorial greater than or equal to n.
        The first values of this function are (Smarandache[6] and
        Sloane[5]):
1,2,6,6,6,6,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,120.
    This is a generalization of the inferior/superior integer part.
2) Let g: A ---> A be a strictly increasing function, and let "~" be a given internal law on \(A\). Then we say that
f: A ---> A is smarandachely complementary with respect to the
function g and the internal law "~" if:
\(f(x)\) is the smallest \(k\) such that there exists a \(z\) in \(A\) so that \(x \sim k=g(z)\).
```

Particular Cases:
a) Smarandache Square Complementary Function:
$f: N--->N, f(x)=$ the smallest k such that $x k$ is a perfect square.
The first values of this function are (Smarandache[6] and Sloane[5]):
$1,2,3,1,5,6,7,2,1,10,11,3,14,15,1,17,2,19,5,21,22,23,6,1,26,3,7$.
b) Smarandache Cubic Complementary Function:
$f: N--->N, f(x)=$ the smallest k such that $x k$ is a
perfect cube.
The first values of this function are (Smarandache[6] and Sloane[5]):
$1,4,9,2,25,36,49,1,3,100,121,18,169,196,225,4,289,12,361,50$.
More generally:
c) Smarandache m-power Complementary Function:
$f: N-->N, f(x)=$ the smallest k such that $x k$ is a perfect m-power.
d) Smarandache Prime Complementary Function:
$f: N-->N, f(x)=$ the smallest k such that $x+k$ is a prime.
The first values of this function are (Smarandache[6] and
Sloane[5]):
$1,0,0,1,0,1,0,3,2,1,0,1,0,3,2,1,0,1,0,3,2,1,0,5,4,3,2,1,0,1,0,5$.
[1] Castillo, Jose, "Other Smarandache Type Functions", http://www.gallup.unm.edu/-smarandache/funct2.txt
[2] Dumitrescu, C., Seleacu, V., "Some Notions and Questions in Number THeory", Xiquan Publ. Hse., Phoenix-Chicago, 1994.
[3] Popescu, Marcela, Nicolescu, Mariana, "About the Smarandache Complementary Cubic Function", <Smarandache Notions Journal>, Vol. 7, no. 1-2-3, 54-62, 1996.
[4] Popescu, Marcela, Seleacu, Vasile, "About the Smarandache Complementary Prime Function", <Smarandache Notions Journal>, Vol. 7, no. 1-2-3, 12-22, 1996.
[5] Sloane, N.J.A.S, Plouffe, S., "The Encyclopedia of Integer Sequences", online, email: superseeker@research.att.com (SUPERSEEKER by N. J. A. Sloane, S. Plouffe, B. Salvy, ATT Bell Labs, Murray Hill, NJ 07974, USA).
[6] Smarandache, Florentin, "Only Problems, not Solutions!", Xiquan Publishing House, Phoenix-Chicago, 1990, 1991, 1993; ISBN: 1-879585-00-6.
(reviewed in <Zentralblatt fur Mathematik> by P. Kiss: 11002, 744, 1992;
and in <The American Mathematical Monthly>, Aug.-Sept. 1991);
[7] "The Florentin Smarandache papers" Special Collection, Arizona State University, Hayden Library, Tempe, Box 871006, AZ 85287-1006, USA;
(Carol Moore \& Marilyn Wurzburger: librarians).

