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ABSTRACT. A model of a cone can be constructed from a piece of paper by removing a. wedge 
and taping the edges together. The paper .models d.i.scussed here expa.nd on thil'i idea (one or more 
vredges are added a.nd/or remoVEd). These models aTe flat everywhere, except at the "cone points," 
so the g~d~ic:s am locally :otraight lin'2l'l in a natural SOlllle. Non-Euclidean "effects" are easily 
quantifiable using basic ge::.metry, the Gauss-£)onnet theorem is a na.turally intuitive concept, and 
the connection betwoon hypGrooHc and Glliptic goometry <lond curY!'l.ture is dearly 5EIml. 

1. OBJECTIVES AND NOTES 

The notion that a. geometric space can be manipulated i~ an idea that I would like to instill 
in students. A number of behaviors of lines/geodesics can be found by constructing a variety of 
surfaces. I believe that this can 00 of value, as it is in topology where metric spaces with marginally 
intuitive propertieJ are roadily available. All of the models described in the la.bs are e5selltially 
2-manifolds, so the notion tha.t there are many accessible ma.nifolds will hopefully be carried by the 
student into a study of differential geometry or topology. 

The local geometry of these paper models corresponds directly to the geometry of smoothly curved 
surfaces, SQ they can be u:sed as an introduction to a study of Riemannian geometry. Geodesics 
on these surfaces are easy to find, since they are straight lines when the paper is flattened, and 
a protractor ca.n measure the angle defect, which is e8!'lentially equivalent to a. measure of total 
curvature. Since the Gauss curvature is an infinitesimal version of the angle defect, the definition 
of Ga.uss curvature tan." be motivated in tero:lS of these models. Furthermore, there is a. polyhedral 
venllon of the Ga.uss-Bonnet theorem that is easy to cSee, and this can be used to make sense of the 
smooth version. 

These labs come from a series of projects 1 gave to three students doing an independent study 
course in geometry. The three worked together on these projects with very little help from me, and 
while these students were stronger than average, I think the labs are appropriate for outside-of-class 
assignments that arc independent of the main course of study. I would assign one lab a. week in the 
month prior to starting nun~Eucliden.n geometry. 

2. INTRODUCTION 

The geometry of a sphere is fundamentally different from that of the plane. The essence of this 
difference is captured in the Gauss curvature, where the sphere has constant positive curvature and 
the plane has ;rero curvature everywhere. This different,>e in curvature and geometry manifests itself 
in the mability to build paper models of the sphere out of flat pieces of pa.per. A cylinder, on the 
other hand, is easi~y constructed from paper, and correspondingly has the same (Gauss) curvature 
and local geometry as the plane. In [8.(,.1;, the geodesics on the cylinder correspond to straight lines 
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on the paper when fiat, and a cylindrical paper model qUickly leads to the realization that the 
cylindrica.l gt.'Ode..'5ics axe he1i.xe..'i (degenera.te and non-degenerate). 

A cone can also be cOIl5tructeci from pa.per. The geodesics) while not a5 easily described 85 for 
the cylinder, can be seen the same way. One cllliracteri.<;tic that the cone and sphere share 1.'5 that 
no region containing the vertex can be flattened (without tearing the paper). The cone and sphere 
also share a notion of positive curvature and an elliptic geometry. 

The cone formed by removing a wedge meBsllring f) radians is defined to have an angle defect equal 
to e. I prefer the term imp~j,lse Gurvat7J,re, since the angle defect corresponds to a Gauss curvature 
singularity at the cone point with a finite In fact, if you were to smoothly round off the 
verte-x of the cone and integrate the Gauss curvature, you would get a. tota.l curvature of precisely B. 
As a result, the Gauss-Bonnet theorem e.:dend.s nicely to angle defects. Actually, the Gauss--Bonnet 
th€..'Orern on a cone is obvious once you know what to look for, and perhaps we should say that the 
Gauss-Bonnet theorem is an extension of a polyhedral version due to Descartes. All of this applies 
equally well to hyperbolic g-eomettyl SinL"e adding a wedge introduces a. negative angle def(x::t and a 
nega.tive total curvature. 

FIGURE 1. A pair of geodesics with three points of interS€ction 

3. A SAMPLE PROBLeM FROM LAB 2 

One of the problems in Lab 2 asks the students to construct a 1iUrface that ha..<; a pa.ir of ge<)d.€lSl(;S 

with three points of intersection. If the are to be configured as in Figure 1, they will form 
two regions bounded by 2-gons. The Gauss-Bonnet theorem requires that the total curvature in 
each region must equal the angle l'iUffi of its bounding 2~gon. If we want the angle at the middle 
intesection point to be tJ radians, therefore, then we need to introduce total curvature greater than 
f) inside each region. In terms of cone points, we need to introduce two cone points by removing 
wedges that mea ... 'mre more than B radians. 

FIGURE 2. vVe can remove wedges mea..'iuring more than B radians. 

We can construct the surfa,c.'e M follows. Start with two lines intersecting at a single point as in 
Figure 2. 'Ne can make the pair of lines intersect twice more by removing two wedges) and clearly 
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'Ij; mu .. "t be greater than e (without using the Gauss-Bormet theorem at all). The result is two cone 
points each with total curvature 1/; . 
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FIGURE 3. The continua.tions of the geodesics on the surface will look like this. 
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FIGURE 4. The paper model corresponding to Figure 3 looks like this. 

The particular values for () and 1/J can vary greatly, but e = 45° and 1j; = 90° is convenient to draw, 
and a paper model can be constructed from the diagram in Figure 3. I have drawn one geodesic solid 
and one broken to distinguish them. Note that the continuations of each geodesic must intersect' 
the cut at the BRme angle, 80 it's easy to do with a. ruler and protractor, if you choose convenient 
angles. The resulting paper modeilli shown in Figure 4 . 

....................... 

...................... 

FIGURE 5. The angle defect corresponds to total cill'vature. 
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4. GAuss-BoNNE'!' THEOREM 

I do not address the Ga.uss-Bonnet theorem in any of the labs, but after the students have 
completed the last lab, I would look at the cone point version -of the Gauss-Bonnet theorem. J:.rom 
here, the definition for Gauss curvature on a smooth surface should make sense intuitively. 

The ba."iic idea can be seen using circles and spheres. Consider a circle of radius T centered at the 
cone point of a cone with angle defect 0, 11..<; in Figure 5. In the plane, thL'-l circle will have curvature 
fi = ;. Since the local geometry OIl the cone is Euclidean away from the cone point, the geodesic 
curvature for thi.." circle 8..') a curve on the cone must be the same. That is, fig = ;. 'What is different 
about this circle and a circle in the plane with the snme radius, is that the circle on the cone has a 
smaller circumference. In fact, the difference must be Or. 

We can now compute the total curvature. 

(1) r "'q ds = 1 r ds = 1 (27!T Or) = 27r O. Jc . l' Jc l' 

Since curvature measures the rate of rota.tion of the tangent vector, it should make senile to students 
that the total rotation for (1 simple closed curve in the plane must always be 211". Since any small 
deformation of the circle essentially take5 place in the plane, it should abo make rscm;e that the total 
rotation for a closed curve around the cone point will alwa.ys be 211" minus the angle defect. 
In any case, the formulation of the GaUb--s-Bonnet theorem should seem natural. 

Comparing Equation (1) to the Gauss--Bonnet theorem, 

(2) fa K,g ds ;:;; 211" 1 K dA, 

it's obviotL."l that the angle defect corresponds with the total curvature J K dA. In fact, I think it 
makes perfect sense to motivate the definition of the Gauss curva.ture K in terms of this formula. I 
might start out by doing the following. 

FIGURE 6. The circle of tangency will have the same geodesic curvature on both surfaces. 

Consider a. i.'!!phere tangent to a cone, as shown in Figure 6. The geodesic curvature for the circle of 
tangency will be the same on both surfaces. Therefore, the total curvature for the regions contained 
by the circle on both surfaces should be the same. 'oNe can then requ.ire that the Gauss curvature 
be an infinitesimal version of the total curvature and that it be constant on the sphere. That is, 

(3) 

and 

(4) 

(} = 10 K dA = K l dA = 1<.li2 (J, 

1 
K = liZ' 
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1 think the actual computation is a bit tricky, but there may b€ a. simpler way. In any case, the area 
integral is 

(5) Iv dA = f.2~ f.~ }l2 sin p dpdt = Jt' (1 cos 4»211", 

where the parameters p and t are the phi and theta from spherical coordinates. To express this 
expression in terIilll of 0, note that the circumference of the circle C is 27rr Br on the cone. If the 
radius of this circle in space is p, then this circumference is also 2rrp. Since Rain¢> p, we have 
that 

(6) 271"1 Or == 2rr R sin q" 

and 

(7) B = 27r(1 
R. 

SID¢). 
1 

Now, tanq, = ~,so 
cos ¢> . 
• sm</» = 211"(1 cos ¢). 

sm¢ 
(8) 

Equations (5) and (8) establish equation (3). 

5. FURTHER READING 

Total curvature was studied at least as far back as Descartes, where he used the term inclination 
of the solid a.ngle 111 his investigatiolls of convex polyhedra. It seems that the term angle defect is 
now standard. AB mentioned, Descartes also had a formula that is a Gauss-Bonnet theorem for 
convex polyhedra. I've found some historical bits about this in [1], but I'm not sure if GauBs knew 
about Descartes' work when he was studying the curvature of surfaces. I intend to check this out 
eventually, but I get the sense that the geometry of cone points is too obvious to mention fot' working 
geometers, so this may have been the case for Gauss as well. 

r first became aware,of Descartes' work with angle defects from an article by H. Gottlieb called 
"All thg way with Gauss-Bonnet" in the }.;!ath lvlonthly [21, and an article on the AMS website called 
"Descartes's lost theorem" [4]. The first article is an excellent second introduction to curvattlre. 

My general interest started through my involvement with the Smarandache Geometry Club (Ya
hoo). The members of this club were interested in geometric spaces that satisfied Euclidean axioms 
in some instances and violated them in others. This would be somewhat normal in a Riemannian 
manifold, and 1 remembered reading about something Jeff Weeks called hyperbolic paper in 7he 
Shape ~/ Space ([6]). This hyperbolic paper was constructed by taping equilateral triangles together 
so that there were seven triangles around each vertex. The result is a paper model with a bunch 
of cone points with angle defect equal to ~. Building on this idea, I was able to build a lot of 
models that e.xhibited properties that the members of the club were looking for, a.nd I eventually 
wrote a little book on the !Subject called Smamndache Atlani/alds ([31). I think one of the difficulties 
in motivating proofs in Euclidean geometry is that students have a hard time imagining how any 
of the theoremB could not be true. It's hard to justify a confusing proof for a statement tha.t is 
obviously true. This book has lots of counter-examples. I have copies to give away, so let me know, 
if you want Qne. 

I think cone points come up in the study of orbifolds, but they seem to fit most naturally in an 
area called computational geometry. I know almost nothing about either of these subjects, but (5J 
is a nice, accessible article by two leading computational geometers. 
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