PREAMBLE TO

THE FIRST INTERNATIONAL CONFERENCE ON SMARANDACHE TYPE NOTIONS IN NUMBER THEORY (UNIVERSITY OF CRAIOVA, AUGUST 21-24 1997)

by Henry Ibstedt

Ladies and gentlemen,

It is for me a great honour and a great pleasure to be here at this conference to present some of the thoughts I have given to a few of the ideas and research suggestions given by Florentin Smarandache. In both of my presentations we will look at some integer sequences defined by Smarandache. As part of my work on this I have prepared an inventory of Smarandache sequences, which is probably not complete, but nevertheless it contains 133 sequences. I welcome contributions to complete this inventory, in which an attempt is also made to classify the sequences according to certain main types.

Before giving my first presentation I would like to say a few words about what eventually brought me here.

When I was young my interest in Mathematics began when I saw the beauty of Euclidean geometry - the rigor of a mathematical structure built on a few axioms which seemed the only ones that could exist. That was long before I heard of the Russian mathematician Lobachevsky and hyperbolic geometry. But my facination for Mathematics and numbers was awoken and who can dispute the incredible beauty of a formula like

 $e^{i\pi} + 1 = 0$

and many others. But there was also the disturbing fact that many important truths can not be expressed in closed formulas and that more often than not we have to resort to approximations and descriptions. For a long time I was fascinated by classical mechanics. Newton's laws provided an ideal framework for a great number of interesting problems. But Einstein's theory of relativity and Heisenberg's uncertainty relation put a stop to living and thinking in such a narrow world. Eventually I ended up doing computer applications in Atomic Physics. But also my geographical world became too narrow and I started working in developing countries in Africa, the far East and the Caribbean, far away from computers, libraries and contact with current research. This is when I returned to numbers and Number Theory. In 1979, when micro computers had just started making an impact, I bought one and brought it with me to the depths of Africa. Since then Computer Analysis in Number Theory has remained my major intellectual interest and stimulant.

With these words I would now like to proceed to the subject of this session.