PRIMES IN THE SEQUENCES $\left\{n^{n}+1\right\}_{n=1}^{"}$ and $\left\{n^{n}+1\right\}_{n=1}^{-}$

Maohua Le

Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Abstract. Let n be a positive integer. In this paper we prove that (i) if $n>2$, then $n^{n}-1$ is not a prime; (ii) if $n>2$ and $n^{n}+1$ is a prime, then $n=2^{2^{r}}$, where r is a positive integer.

Let n be a positive integer. In [1, Problem 17], Smarandache posed the following questions

Question A. How many primes belong to the sequence $\left\{n^{n}-1\right\}_{n=1}^{\infty}$?

Question B. How many primes belong to the sequence $\left\{n^{n}+1\right\}_{n=1}^{\infty}$?

In this paper we prove the following results:
Theorem 1. 3 is the only prime belonging to $\left\{n^{n}-1\right\}_{n=1}^{\infty}$.
Theorem 2. If $n>2$ and $n^{n}+1$ is a prime, then we we have $n=2^{2^{r}}$, where r is a positive integer.

Proof of Theorem 1. If $\mathrm{n}=2$, then $2^{2}-1=3$ is a prime. If $n>2$, then we have
(1) $n^{n}-1=(n-1)\left(n^{n-1}+n^{n-2}+\ldots+n+1\right)$

Since $n-1>1$ and $\left(n^{n-1}+n^{n-2}+\ldots+n+1\right)$ if $n>2$, we see from
(1) that $n^{n}-1$ is not a prime. The theorem is proved. Proof of Theorem 2. Let $n^{n}+1$ be a prime with $n>2$.
Since $n^{n}+1$ is an even integer greater than 2 if $2 \gamma n$, we get $2 \mid n$. Let $n=2^{\prime} n_{1}$, where s, n_{1} are positive integers with $2 \gamma n_{1}$. If $n_{1}>1$, then we have
(2) $\quad n^{n}+1=\left(n^{2}\right)^{2} n_{1}+1=\left(n^{2}+1\right)\left(n^{2}{ }^{2}\left(n_{1}-1\right) \quad-n^{2}\left(n_{1}-2\right)+\ldots-n^{2}+1\right)$.

It is not a prime. So we have $n_{1}=1$ and $n=2^{3}$. It implies that
(3) $n^{n}+1=2^{s^{*} 2^{s}}+1$.

By the same method, we see from (3) that if $n^{n}+1$ is a
prime, then s must be a power of 2 . Thus, we get $n=2^{2^{r}}$.
The Theorem is proved.

Reference

1. F.Smarandache, Only Problems, not Solutions!, Xiquan

Pub. House, Phoenix, Chicago, 1990.

