PRIMES IN THE SEQUENCES $\{n^n + 1\}_{n=1}^{n}$ and $\{n^n + 1\}_{n=1}^{n}$

Maohua Le

Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Abstract. Let n be a positive integer. In this paper we prove that (i) if n > 2, then $n^n - 1$ is not a prime; (ii) if n > 2 and $n^n + 1$ is a prime, then $n = 2^{2^n}$, where r is a positive integer.

Let n be a positive integer. In [1, Problem 17], Smarandache posed the following questions

Question A. How many primes belong to the sequence $\{n^n - 1\}_{n=1}^{\infty}$?

Question B. How many primes belong to the sequence $\{n^n + 1\}_{n=1}^{\infty}$?

In this paper we prove the following results:

Theorem 1. 3 is the only prime belonging to $\{n^n - 1\}_{n=1}$.

Theorem 2. If n > 2 and $n^n + 1$ is a prime, then we

we have $n = 2^{2^r}$, where r is a positive integer.

Proof of Theorem 1. If n = 2, then $2^2 - 1 = 3$ is a prime. If n > 2, then we have

(1)
$$n^{n} - 1 = (n - 1) (n^{n-1} + n^{n-2} + ... + n + 1)$$

Since n-1 > 1 and $(n^{n-1} + n^{n-2} + ... + n + 1)$ if n > 2, we see from (1) that $n^n - 1$ is not a prime. The theorem is proved.

Proof of Theorem 2. Let $n^n + 1$ be a prime with n > 2. Since $n^n + 1$ is an even integer greater than 2 if $2 \not n$, we get $2 \mid n$. Let $n = 2 \cdot n_1$, where s, n_1 are positive integers with $2 \not n_1$. If $n_1 > 1$, then we have

(2)
$$n^{n} + 1 = (n^{n})^{2^{n}} + 1 = (n^{n} + 1)(n^{n} - n^{n} + ... - n^{n} + 1).$$

It is not a prime. So we have $n_1 = 1$ and $n = 2^s$. It implies that

(3)
$$n^{n} + 1 = 2^{s^{*}2^{*}} + 1$$

By the same method, we see from (3) that if $n^n + 1$ is a

prime, then s must be a power of 2. Thus, we get $n = 2^2$. The Theorem is proved.

Reference

1. F.Smarandache, Only Problems, not Solutions!, Xiquan Pub. House, Phoenix, Chicago, 1990.