PRIMES IN THE SMARANDACHE SQUARE PRODUCT SEQUENCE

Maohua Le
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China

Abstract. For any positive integer n, let a_{n} be the n-th square number, and let $s_{0}=1+a_{i} a_{2} \ldots a_{n}$. In this paper we prove that if $n>2,2 \mid n$ and $2 n+1$ is a prime, then s_{n} is not a prime.

For any positive integer n, let a_{n} be the n-th square ∞ number, and let $s_{n}=1+a_{\text {: }} a_{2} \ldots a_{.}$. Then the sequence $\left.S_{=\left\{s_{0}\right.}\right\}_{n=:}$ is called the Smarandache square product sequence. In[2], Iacobescuasked the following question.

Question. How many terms in S are primes?
In this paper we prove the following result:
Theorem. If $n>2,2 \mid n$ and $2 n+1$ is a prime, then s is not a prime.

Proof. By the definition of s_{n}, we have

$$
\begin{equation*}
s_{n}=1+a_{:} \quad a_{2} \ldots a_{n}=1+(n!)^{2} . \tag{1}
\end{equation*}
$$

Iet $p=2 n+1$. It is a well known fact that if $2 n$ and p is p is a prime, then we have
(2) $(n!)^{2} \equiv-1(\bmod p)$,
(see[1,p.88]). Therefore, by (1) and (2), we get
(3) pos.

Further, if $n>2$, then $s_{n}=1+(n!)^{2}>2 n+1=p$. Thus, by (3), $s_{\text {. }}$ is not a prime. The theorem is proved.

Reference
I.G.F.Hardy and e.m.Wright, An Introduction to the Theory of numbers, Oxford Univ. Press, Oxford, 1938. 2. I. Iacobescu, Smarandache pertition type and other sequences, Buil. Pure Appl. sci. Sect. E 16(1997), No.2, 237-240.

