Products of Factorials in Smarandache Type Expressions

Florian Luca

Introduction

In [3] and [5] the authors ask how many primes are of the form $x^y + y^x$, where gcd (x, y) = 1 and $x, y \ge 2$. Moreover, Jose Castillo (see [2]) asks how many primes are of the Smarandache form $x_1^{x_2} + x_2^{x_3} + ... + x_n^{x_1}$, where $n > 1, x_1, x_2, ..., x_n > 1$ and gcd $(x_1, x_2, ..., x_n) = 1$ (see [9]).

In this article we announce a lower bound for the size of the largest prime divisor of an expression of the type $ax^y + by^x$, where $ab \neq 0, x, y \geq 2$ and gcd (x, y) = 1.

For any finite extension F of Q let $d_{\mathbf{F}} = [\mathbf{F} : \mathbf{Q}]$. For any algebraic number $\zeta \in \mathbf{F}$ let $N_{\mathbf{F}}(\zeta)$ denote the norm of ζ .

For any rational integer n let P(n) be the largest prime number P dividing n with the convention that $P(0) = P(\pm 1) = 1$.

Theorem 1. Let α and β be algebraic integers with $\alpha \cdot \beta \neq 0$. Let $K = Q[\alpha, \beta]$. For any two positive integers x and y let $X = \max(x, y)$. There exist computable positive numbers C_1 and C_2 depending only on α and β such that

$$P\left(N_{\mathbf{K}}\left(\alpha x^{y}+\beta y^{x}\right)\right) > C_{1}\left(\frac{X}{\log^{3} X}\right)^{1/(d_{\mathbf{K}}+1)}$$

whenever $x, y \ge 2$, gcd (x, y) = 1, and $X > C_2$.

The proof of Theorem 1 uses lower bounds for linear forms in logarithms of algebraic numbers (see [1] and [7]) as well as an idea of Stewart (see [10]).

Erdös and Obláth (see [4]) found all the solutions of the equation $n! = x^p \pm y^p$ with gcd (x, y) = 1 and p > 2. Moreover, the author (see [6]) showed that in every non-degenerate binary recurrence sequence $(u_n)_{n\geq 0}$ there are only finitely many terms which are products of factorials.

We use Theorem 1 to show that for any two given integers a and b with $ab \neq 0$, there exist only finitely many numbers of the type $ax^y + by^x$, where $x, y \geq 2$ and gcd (x, y) = 1, which are products of factorials.

Let \mathcal{PF} be the set of all positive integers which can be written as products of factorials; that is

$$\mathcal{PF} = \{ w \mid w = \prod_{j=1}^{k} m_j !, \text{ for some } m_j \ge 1 \}.$$

Theorem 2. Let $f_1, ..., f_s \in \mathbb{Z}[X, Y]$ be $s \ge 1$ homogeneous polynomials of positive degrees. Assume that $f_i(0, Y) \cdot f_i(X, 0) \neq 0$ for i = 1, ..., s. Then, the equation

$$f_1(x_1^{y_1}, y_1^{x_1}) \cdot \dots \cdot f_s(x_s^{y_s}, y_s^{x_s}) \in \mathcal{PF},$$
(1)

with gcd $(x_i, y_i) = 1$ and $x_i, y_i \ge 2$, for i = 1, ..., s, has finitely many solutions $x_1, y_1, ..., x_s, y_s$. Moreover, there exists a computable positive number C depending only on the polynomials $f_1, ..., f_s$ such that all solutions of equation (1) satisfy max $(x_1, y_1, ..., x_s, y_s) < C$.

We also have the following inhomogeneous variant of theorem 2.

Theorem 3. Let $f_1, ..., f_s \in \mathbb{Z}[X]$ be $s \ge 1$ polynomials of positive degrees. Assume that $f_i(0) \equiv 1 \pmod{2}$ for i = 1, ..., s. Let $a_1, ..., a_s$ and $b_1, ..., b_s$ be 2s odd integers. Then, the equation

$$f_1(a_1x_1^{y_1} + b_1y_1^{x_1}) \cdot \dots \cdot f_s(a_sx_s^{y_s} + b_sy_s^{x_s}) \in \mathcal{PF},$$
(2)

with gcd $(x_i, y_i) = 1$ and $x_i, y_i \ge 2$, for i = 1, ..., s, has finitely many solutions $x_1, y_1, ..., x_s, y_s$. Moreover, there exists a computable positive number C depending only on the polynomials $f_1, ..., f_s$ and the 2s numbers $a_1, b_1, ..., a_s, b_s$, such that all solutions of equation (2) satisfy max $(x_1, y_1, ..., x_s, y_s) < C$.

We conclude with the following computational results:

Theorem 4. All solutions of the equation

 $x^{y} \pm y^{x} \in \mathcal{PF}$ with gcd (x, y) = 1 and $x, y \ge 2$,

satisfy max $(x, y) < \exp 177$.

Theorem 5. All solutions of the equation

 $x^{y} + y^{z} + z^{x} = n!$ with gcd (x, y, z) = 1 and $x, y, z \ge 2$,

satisfy max $(x, y, z) < \exp 518$.

2. Preliminary Results

The proofs of theorems 1-5 use estimations of linear forms in logarithms of algebraic numbers.

Suppose that $\zeta_1, ..., \zeta_l$ are algebraic numbers, not 0 or 1, of heights not exceeding $A_1, ..., A_l$, respectively. We assume $A_m \ge e^e$ for m = 1, ..., l. Put $\Omega = \log A_1 ... \log A_l$. Let $\mathbf{F} = \mathbf{Q}[\zeta_1, ..., \zeta_l]$. Let $n_1, ..., n_l$ be integers, not all 0, and let $B \ge \max |n_m|$. We assume $B \ge e^2$. The following result is due to Baker and Wüstholz. Theorem BW ([1]). If $\zeta_1^{n_1}...\zeta_m^{n_l} \neq 1$, then

$$|\zeta_1^{n_1} \dots \zeta_l^{n_l} - 1| > \frac{1}{2} \exp\left(-(16(l+1)d_{\mathbf{F}})^{2(l+3)} \Omega \log B\right).$$
(3)

In fact, Baker and Würtholz showed that if $\log \zeta_1, ..., \log \zeta_l$ are any fixed values of the logarithms, and $\Lambda = n_1 \log \zeta_1 + ... + n_l \log \zeta_l \neq 0$, then

$$\log|\Lambda| > -(16ld_{\mathbf{F}})^{2(l+2)}\Omega\log B.$$
(4)

Now (4) follows easily from (3) via an argument similar to the one used by Shorey *et al.* in their paper [8].

We also need the following p-adic analogue of theorem BW which is due to van der Poorten.

Theorem vdP ([7]). Let π be a prime ideal of F lying above a prime integer p. Then,

$$\operatorname{ord}_{\pi}\left(\zeta_{1}^{n_{1}}...\zeta_{l}^{n_{l}}-1\right) < \left(16(l+1)d_{\mathbf{F}}\right)^{12(l+1)}\frac{p^{d_{\mathbf{F}}}}{\log p}\Omega\left(\log B\right)^{2}.$$
 (5)

The following estimations are useful in what follows.

Lemma 1. Let $n \ge 2$ be an integer, and let $p \le n$ be a prime number. Then

(i)

$$n^{n/2} \le n! \le n^n. \tag{6}$$

(ii)

$$\frac{n}{4(p-1)} \le \operatorname{ord}_p n! \le \frac{n}{p-1}.$$
(7)

Proof. See [6].

Lemma 2. (1) Let $s \ge 1$ be a positive integer. Let C and X be two positive numbers such that $C > \exp s$ and X > 1. Let y > 0 be such that $y < C \log^{s} X$. Then, $y \log y < (C \log C) \log^{s+1} X$.

(2) Let $s \ge 1$ be a positive integer, and let $C > \exp(s(s+1))$. If X is a positive number such that $X < C \log^s X$, then $X < C \log^{s+1} C$.

Proof. (1) Clearly,

$$y \log y < C \log^s X (\log C + s \log \log X).$$

It suffices to show that

$$\log C + s \log \log X < \log C \log X.$$

The above inequality is equivalent to

$$\log C(\log X - 1) > s \log \log X.$$

This last inequality is obviously satisfied since $\log C > s$ and $\log X > \log \log X + 1$, for all X > 1.

(2) Suppose that $X \ge C \log^{s+1} C$. Since $s \ge 1$ and $C > \exp(s(s+1))$, it follows that $C \log^{s+1} C > C > \exp s$. The function $\frac{y}{\log^s y}$ is increasing for $y > \exp s$. Hence, since $X \ge C \log^{s+1} C$, we conclude that

$$\frac{C\log^{s+1}C}{\log^s(C\log^{s+1}C)} \le \frac{X}{\log^s X} < C.$$

The above inequality is equivalent to

$$\frac{\log^{s+1} C}{\left(\log C + (s+1)\log\log C\right)^s} < 1,$$

or

$$\log C < \left(1 + (s+1)\frac{\log \log C}{\log C}\right)^s.$$

By taking logarithms in this last inequality we obtain

$$\log \log C < s \log \left(1 + (s+1) \frac{\log \log C}{\log C}\right) < s(s+1) \frac{\log \log C}{\log C}.$$

This last inequality is equivalent to $\log C < s(s+1)$, which contradicts the fact that $C > \exp(s(s+1))$.

3. The Proofs

The Proof of Theorem 1. By C_1 , C_2 , ..., we shall denote computable positive numbers depending only on the numbers α and β . Let $d = d_{\mathbf{K}}$. Let

$$N_{\mathbf{K}}(\alpha x^{y} + \beta y^{x}) = p_{1}^{\delta_{1}} \cdot \ldots \cdot p_{k}^{\delta_{k}}$$

where $2 < p_1 < p_2 < ... < p_k$ are prime numbers. For $\mu = 1, ..., d$, let $\alpha^{(\mu)}x^y + \beta^{(\mu)}y^x$ be a conjugate, in K, of $\alpha x^y + \beta y^x$. Fix i = 1, ..., k. Let π be a prime ideal of K lying above p_i . We use theorem vdP to bound $\operatorname{ord}_{\pi}(\alpha^{(\mu)}x^y + \beta^{(\mu)}y^x)$. We distinguish two cases:

CASE 1. $p_i \mid xy$. Suppose, for example, that $p_i \mid y$. Since (x, y) = 1, it follows that $p_i \not \mid x$. Hence, by theorem vdP,

$$\operatorname{ord}_{\pi}\left(\alpha^{(\mu)}x^{y} + \beta^{(\mu)}y^{x}\right) = \operatorname{ord}_{\pi}\left(\alpha^{(\mu)}x^{y}\right) + \operatorname{ord}_{\pi}\left(1 - \left(-\frac{\beta^{(\mu)}}{\alpha^{(\mu)}}\right)y^{x}x^{-y}\right) <$$

$$< C_1 + C_2 \frac{p_i^d}{\log p_i} \log^4 X.$$
 (8)

where $C_1 = d \cdot \log_2 N_{\mathbf{K}}(\alpha)$, and C_2 can be computed in terms of α and β using theorem vdP.

CASE 2. $p_i \not \mid xy$. In this case

$$\operatorname{ord}_{\pi}\left(\alpha^{(\mu)}x^{y} + \beta^{(\mu)}y^{x}\right) = \operatorname{ord}_{\pi}\left(\alpha^{(\mu)}x^{y}\right) + \operatorname{ord}_{\pi}\left(1 - \left(-\frac{\beta^{(\mu)}}{\alpha^{(\mu)}}\right) \cdot \frac{y^{x}}{x^{y}}\right) < < C_{1} + C_{2}\frac{p_{i}^{d}}{\log p_{i}}\log^{4}X.$$

$$(9)$$

Combining Case 1 and Case 2 we conclude that

$$\operatorname{ord}_{\pi}\left(\alpha^{(\mu)}x^{y} + \beta^{(\mu)}y^{x}\right) < C_{3}\frac{p_{i}^{d}}{\log p_{i}}\log^{4}X, \tag{10}$$

where $C_3 = 2 \cdot \max(C_1, C_2)$. Hence,

$$\delta_i = \operatorname{ord}_{p_i} \left(N_{\mathbf{K}} \left(\alpha x^y + \beta y^x \right) \right) < C_4 \frac{p_i^d}{\log p_i} \log^4 X.$$
(11)

where $C_4 = dC_3$. Denote p_k by P. Since $p_i \leq P$ for i = 1, ..., k, it follows, by formula (11), that

$$\log\left(N_{\mathbf{K}}(\alpha x^{y} + \beta y^{x})\right) \leq \sum_{i=1}^{k} \delta_{i} \cdot \log p_{i} < kC_{4}P^{d} \log^{4} X.$$
(12)

Clearly $k \leq \pi(P)$, where $\pi(P)$ is the number of primes less than or equal to P. Combining inequality (12) with the prime number theorem we conclude that

$$\log\left(N_{\mathbf{K}}\left(\alpha x^{y} + \beta y^{x}\right)\right) < C_{5} \frac{P^{d+1}}{\log P} \log^{4} X.$$
(13)

We now use theorem BW to find a lower bound for $\log(N_{\mathbf{K}}(\alpha x^{y} + \beta y^{x}))$. Suppose that X = y. For $\mu = 1, ..., d$, we have

$$\log\left(|\alpha^{(\mu)}x^{y} + \beta^{(\mu)}y^{x}|\right) = \log\left(|\alpha^{(\mu)}x^{y}|\right) + \log\left(\left|1 - \left(-\frac{\beta^{(\mu)}}{\alpha^{(\mu)}}\right) \frac{y^{x}}{x^{y}}\right|\right) > C_{6} + X\log 2 - C_{7}\log^{3} X.$$

where $C_6 = \min(\log |\alpha^{(\mu)}| | \mu = 1, ..., d)$, and C_7 can be computed using theorem BW. Hence,

$$\log\left(N_{\mathbf{K}}(\alpha x^{y} + \beta y^{x})\right) > dC_{6} + dX\log 2 - dC_{7}\log^{3} X.$$
(14)

Let $C_8 = dC_6$, $C_9 = d \log 2$, and $C_{10} = dC_7$. Let also C_{11} be the smallest positive number such that

$$\frac{1}{2}C_9 y > C_{10} \log^3 y - C_8, \qquad \text{for } y > C_{11}.$$

Combining inequalities (13) and (14) it follows that

$$C_5 \frac{P^{d+1}}{\log P} \log^4 X > C_8 + C_9 X - C_{10} \log^3 X > \frac{1}{2} C_9 X, \tag{15}$$

for $X \ge C_{11}$. Inequality (15) clearly shows that

$$P > C_{12}\left(\frac{X}{\log^3 X}\right)^{\frac{1}{d+1}}, \quad \text{for } X \ge C_{11}.$$

The Proof of Theorem 2. By C_1 , C_2 , ..., we shall denote computable positive numbers depending only on the polynomials f_1 , ..., f_s . We may assume that f_1 , ..., f_s are linear forms with algebraic coefficients. Let $f_i(X, Y) = \alpha_i X + \beta_i Y$ where $\alpha_i \beta_i \neq 0$, and let $K = Q[\alpha_1, \beta_1, ..., \alpha_s, \beta_s]$. Let $(x_1, y_1, ..., x_s, y_s)$ be a solution of (1). Equation (1) implies that

$$\prod_{i=1}^{s} N_{\mathbf{K}} \left(\alpha_i x_i^{y_i} + \beta_i y_i^{x_i} \right) = n_1! \cdot \ldots \cdot n_k! \tag{16}$$

We may assume that $2 \le n_1 \le n_2 \le ... \le n_k$. Let $X = \max(x_i, y_i \mid i = 1, ..., s)$. It follows easily, by inequality (10), that

$$\operatorname{prd}_{2}\left(\prod_{i=1}^{s} N_{\mathbf{K}}\left(\alpha_{i} x_{i}^{y_{i}} + \beta_{i} y_{i}^{x_{i}}\right)\right) < C_{1} \log^{4} X.$$

$$(17)$$

Hence,

$$\sum_{i=1}^k \operatorname{ord}_2 n_i! < C_1 \log^4 X.$$

By lemma 1, it follows that

$$n_k < 4C_1 \log^4 X. \tag{18}$$

On the other hand, by theorem 1, there exists computable constants C_{2i} and C_{3i} , such that

$$P\left(N_{\mathbf{K}}\left(\alpha_{i}x_{i}^{y_{i}}+\beta_{i}y_{i}^{x_{i}}\right)\right)>C_{2i}\left(\frac{X_{i}}{\log^{3}X_{i}}\right)^{1/(d_{\mathbf{K}}+1)}$$
(19)

whenever x_i , $y_i \ge 2$, gcd $(x_i, y_i) = 1$ and $X_i = \max(x_i, y_i) > C_{3i}$. Let $C_2 = \min(C_{2i} \mid i = 1, ..., s)$ and let $C_3 = \max(C_{3i} \mid i = 1, ..., s)$. Suppose that $X > C_3$. From inequality (19) we conclude that

$$P\left(\prod_{i=1}^{s} N_{\mathbf{K}}\left(\alpha_{i} x_{i}^{y_{i}} + \beta_{i} y_{i}^{x_{i}}\right)\right) > C_{2}\left(\frac{X}{\log^{3} X}\right)^{1/(d_{\mathbf{K}}+1)}.$$
 (20)

Since $P \mid \prod_{i=1}^{n} n_i!$, it follows that $P \leq n_k$. Combining inequalities (18) and (20) we conclude that

$$C_2\left(\frac{X}{\log^3 X}\right)^{1/(d_{\mathbf{K}}+1)} < 4C_1\log^4 X.$$
 (21)

Inequality (21) clearly shows that $X < C_4$.

The Proof of Theorem 3. By C_1 , C_2 , ..., we shall denote computable positive numbers depending only on the polynomials f_1 , ..., f_s and on the numbers a_1 , b_1 , ..., a_s , b_s . Let $(x_1, y_1, ..., x_s, y_s)$ be a solution of (2). Let $X_i = \max(x_i, y_i)$, and let $X = \max(X_i \mid i = 1, ..., s)$. Finally, let

$$f_i(Z) = c_i \prod_{j=1}^{d_i} (Z - \zeta_{i,j}).$$

Let $K = \mathbf{Q}[\zeta_{i,j}]_{\substack{1 \leq i \leq s \\ 1 \leq j \leq d_i}}$, and let $d = [\mathbf{K} : \mathbf{Q}]$, $D = \sum_{i=1}^{s} d_i$, and $c = \prod_{i=1}^{s} c_i$. Let π be a prime ideal of K lying above 2. Let $Z_i = a_i x_i^{y_i} + b_i y_i^{x_i}$. We first bound $\operatorname{ord}_{\pi} f_i(Z_i)$. First, notice that $\operatorname{ord}_{\pi}(a_i b_i) = 0$. Moreover, since $f_i(0) \equiv 1 \pmod{2}$, it follows that $\operatorname{ord}_{\pi}(\zeta_{i,j}) = 0$, for all $j = 1, ..., d_i$. We distinguish 2 cases:

CASE 1. Assume that 2 $\not \mid x_i y_i$. Then $f_i(Z_i) \equiv f_i(0) \equiv 1 \pmod{2}$. Hence, $\operatorname{ord}_{\pi} f_i(Z_i) = 0$.

CASE 2. Assume that $2 | x_i$. In this case, $\operatorname{ord}_{\pi}(y) = 0$. Fix $j = 1, ..., d_i$. Then,

$$\operatorname{ord}_{\pi}\left(Z_{i}-\zeta_{i,j}\right)=\operatorname{ord}_{\pi}\left(a_{i}x_{i}^{y_{i}}+\left(b_{i}y_{i}^{x_{i}}-\zeta_{i,j}\right)\right).$$
(22)

Since $\operatorname{ord}_{\pi}(b_i y_i^{x_i}) = \operatorname{ord}_{\pi}(\zeta_{i,j}) = 0$, it follows, by theorem vdP, that

$$\operatorname{ord}_{\pi}\left(b_{i}y_{i}^{x_{i}}-\zeta_{i,j}\right)=\operatorname{ord}_{\pi}\left(b_{i}y_{i}^{x_{i}}(\zeta_{i,j})^{-1}-1\right)< C_{1}\log^{3}X_{i}.$$
(23)

We distinguish 2 cases:

CASE 2.1. $y_i \ge C_1 \log^3 X_i$. In this case, from formula (22) and inequality (23), it follows that

$$\operatorname{ord}_{\pi}(Z_{i}-\zeta_{i,j}) = \operatorname{ord}_{\pi}(b_{i}y_{i}^{x_{i}}-\zeta_{i,j}) < C_{1}\log^{3}X_{i}.$$
(24)

CASE 2.2. $y_i < C_1 \log^3 X_i$. In this case,

$$\operatorname{ord}_{\pi}\left(Z_{i}-\zeta_{i,j}\right)=\operatorname{ord}_{\pi}\left(b_{i}y_{i}^{x_{i}}+\left(a_{i}x_{i}^{y_{i}}-\zeta_{i,j}\right)\right).$$
(25)

Let $\Delta = a_i x_i^{y_i} - \zeta_{i,j}$. Let $H(\Delta)$ be the height of Δ . Clearly,

$$H(\Delta) < C_2 x_i^{d_i y_i}.$$

Hence,

$$\log(H(\Delta)) < \log C_2 + d_i y_i \log x_i < C_3 + C_4 \log^4 X_i,$$

where $C_3 = \log C_2$, and $C_4 = C_1 \cdot \max(d_i \mid i = 1, ..., s)$. Since $\operatorname{ord}_{\pi}(b_i) = \operatorname{ord}_{\pi}(y_i^{x_i}) = 0$, it follows, by theorem vdP, that

$$\operatorname{ord}_{\pi}(Z_{i} - \zeta_{i,j}) = \operatorname{ord}_{\pi}(1 - b_{i}^{-1}y_{i}^{-x_{i}}\Delta) < C_{5}\log y_{i}\log(H(\Delta))\log^{2} x_{i} < < C_{5}\log^{3} X_{i}(C_{3} + C_{4}\log^{4} X_{i}).$$
(26)

Let $C_6 = 2C_4C_5$. Also, let

$$C_7 = \exp((C_3/C_4)^{1/4}).$$

From inequalities (23) and (26), it follows that

$$\operatorname{ord}_{\pi}(Z_i - \zeta_{i,j})) < C_6 \log^7 X, \quad \text{for } X > C_7.$$
 (27)

Hence,

$$\operatorname{ord}_{2}\left(\prod_{i=1}^{s} f_{i}(Z_{i})\right) < C_{8} \log^{7} X, \qquad \text{for } X > C_{7}, \qquad (28)$$

where $C_8 = 2 \max (sDC_6, c)$. Suppose now that

$$\prod_{i=1}^{s} f_i(Z_i) = \prod_{j=1}^{k} n_j!,$$
(29)

where $2 \le n_1 \le n_2 \le ... \le n_k$. From inequality (28) and lemma 1, it follows that

$$\sum_{j=1}^{k} n_j < C_9 \log^7 X,$$

where $C_9 = 4C_8$. Hence,

$$\log\left(\prod_{j=1}^{k} n_{j}!\right) = \sum_{j=1}^{k} \log n_{j}! < \sum_{j=1}^{k} n_{j} \log n_{j} < \left(\sum_{j=1}^{k} n_{j}\right) \log\left(\sum_{j=1}^{k} n_{j}\right) < < C_{9} \log^{7} X \left(\log C_{9} + 7 \log \log X\right), \quad \text{for } X > C_{7}.$$
(30)

Let C_{10} be the smallest positive number $\geq C_7$ such that

 $y > \log C_9 + 7 \log \log y, \qquad \text{for } y > C_{10}.$

From inequality (30), it follows that

$$\log\left(\prod_{j=1}^{k} n_{j}!\right) < C_{9} \log^{8} X, \qquad \text{whenever } X > C_{10}. \tag{31}$$

We now bound $\log(\prod_{i=1}^{n} f_i(Z_i))$. Fix i = 1, ..., s. Suppose that $y_i = X_i$. By Theorem BW,

$$\log |Z_i| = \log |a_i x_i^{y_i} + b_i y_i^{x_i}| = \log (|a_i| x_i^{y_i}) + \log \left(\left| 1 - \left(-\frac{b_i}{a_i} \right) y_i^{x_i} x_i^{-y_i} \right| \right) > C_{11} + X_i \log 2 - C_{12} \log^3 X_i,$$
(32)

where $C_{11} = \min(|a_i| | i = 1, ..., s)$, and C_{12} can be computed using theorem BW. Let $C_{13} = (\log 2)/2$, and let C_{14} be the smallest positive number $\geq C_{10}$ such that

$$C_{11} + y \log 2 - C_{12} \log^3 y > C_{13}y,$$
 for $y > C_{14}$.

From inequality (32) it follows that

$$\max(\log |Z_i|) > C_{13}X, \qquad \text{for } X > C_{14}. \tag{33}$$

On the other hand, for each i = 1, ..., s, there exists two computable constants C_i and C'_i such that

$$|f_i(Z_i)| > C_i |Z_i|^{d_i}$$
, whenever $|Z_i| > C'_i$.

Let $C_{15} = \min (C_i \mid i = 1, ..., s)$, and let $C_{16} = \max (C'_i \mid i = 1, ..., s)$. Finally, let $C_{17} = \max (C_{14}, (\log C_{16})/C_{13})$. Suppose that $X > C_{17}$. Since $|f_i(Z_i)| \ge 1$, for all i = 1, ..., s, it follows, by inequality (33), that

$$\log\left(\prod_{i=1}^{s} f_{i}(Z_{i})\right) \geq \max\left(\log|f_{i}(Z_{i})| \ i = 1, \ ..., \ s\right) >$$

 $> \log C_{15} + \max \left(\log |Z_i| \mid i = 1, ..., s \right) > \log C_{15} + C_{13}X, \text{ for } X > C_{17}.$ (34)
From equation (29) and inequalities (31) and (34), it follows that

$$\log C_{15} + C_{13}X < C_9 \log^8 X, \qquad \text{for } X > C_{17}. \tag{35}$$

Inequality (35) clearly shows that $X < C_{18}$.

The Proof of Theorem 4. Let $X = \max(x, y)$. Notice that if $x^y \pm y^x \in \mathcal{PF}$, than xy is odd. Hence, by theorem vdP,

$$\operatorname{ord}_2(x^y \pm y^x) = \operatorname{ord}_2(1 - (\mp y)^x x^{-y}) < 48^{36} \cdot \frac{2}{\log 2} \cdot \log^4 X.$$
 (36)

Suppose that

۶.

$$x^y \pm y^x = n_1! \cdot \dots \cdot n_k!, \tag{37}$$

where $2 \leq n_1 \leq ... \leq n_k$. From inequality (36) and lemma 1 it follows that

$$\sum_{i=1}^{k} n_i \le 4\left(\sum_{i=1}^{k} \operatorname{ord}_2(n_i!)\right) < 48^{36} \cdot \frac{8}{\log 2} \cdot \log^4 X < 12 \cdot 48^{36} \cdot \log^4 X.$$
(38)

It follows, by lemma 2 (1), that

$$\log(x^{y} \pm y^{x}) = \log \prod_{i=1}^{k} n_{i}! = \sum_{i=1}^{k} \log n_{i}! < \sum_{i=1}^{k} n_{i} \log n_{i} < \left(\sum_{i=1}^{k} n_{i}\right) \log\left(\sum_{i=1}^{k} n_{i}\right) < 12 \cdot 48^{36} \log(12 \cdot 48^{36}) \cdot \log^{5} X < 1703 \cdot 48^{36} \log^{5} X.$$
(39)

Suppose now that X = y. Then, by theorem BW,

$$\log |x^{y} \pm y^{x}| \ge \log |x^{y} - y^{x}| = \log(x^{y}) + \log |1 - y^{x}x^{-y}| >$$

> $X \log 3 - \log 2 - 48^{10} \log^{3} X.$ (40)

Combining inequalities (39) and (40), we conclude that

$$X < X \log 3 < \log 2 + 48^{10} \log^3 X + 1703 \cdot 48^{36} \log^5 X < 1704 \cdot 48^{36} \log^5 X.$$
 (41)
Let $C = 1704 \cdot 48^{36}$, and let $s = 5$. Since $\log C = \log 1704 + 36 \log 48 > 30$, it follows, by lemma 2 (2), that

$$X < C \cdot \log^6 C < 1704 \cdot 48^{36} \cdot 147^6.$$
⁽⁴²⁾

Hence, $\log X < 177$.

The Proof of Theorem 5. Suppose that (x, y, z, n) is a solution of $x^y + y^z + z^x = n!$, with gcd (x, y, z) = 1 and min (x, y, z) > 1. Let $X = \max(x, y, z)$. We assume that $\log X > 519$. Clearly, not all three numbers x, y, z can be odd. We may assume that 2 | x. In this case, both y and z are odd. By theorem vdP,

$$\operatorname{ord}_2(y^z + z^x) = \operatorname{ord}_2(1 - (-y)^{-z}z^x) < 48^{36} \frac{2}{\log 2} \log^4 X < 3 \cdot 48^{36} \log^4 X.$$

(43)

We distinguish two cases:

CASE 1. $y \ge 3 \cdot 48^{36} \log^4 X$. In this case, by lemma 1,

$$n/4 \le \operatorname{ord}_2 n! = \operatorname{ord}_2(x^y + y^z + z^x) = \operatorname{ord}_2(y^z + z^x) < 3 \cdot 48^{36} \log^4 X.$$
 (44)

Hence,

$$n < 12 \cdot 48^{36} \log^4 X. \tag{45}$$

By lemma 2(1), it follows that

$$n\log n < 12 \cdot 48^{36}\log(12 \cdot 48^{36})\log^5 X < 1703 \cdot 48^{36}\log^5 X.$$
(46)

We conclude that

$$X \log 2 < \log(x^y + y^z + z^x) = \log n! < n \log n < 1703 \cdot 48^{36} \log^5 X.$$

Let $C = 1703 \cdot 48^{36} / \log 2$, and let s = 5. Since $\log C > 30$, it follows, by lemma 2 (2), that

$$X < C \log^6 C < 2457 \cdot 48^{36} \cdot 148^6.$$

Hence, $\log X < 178$, which is a contradiction.

CASE 2. $y < 3 \cdot 48^{36} \log^4 X$. Let p be a prime number such that $p \mid y$. We first show that $p \not\mid x$. Indeed, assume that $p \mid x$. Since gcd (x, y, z) = 1, it follows that $p \not\mid z$. QWe conclude that $p \not\mid n!$, therefore n < p. Hence,

$$n$$

In particular, n satisfies inequality (45). From Case 1 we know that $\log X < 178$, which is a contradiction.

Suppose now that $p \not\mid x$. Then, by theorem vdP,

$$\operatorname{ord}_{p}(x^{y} + z^{x}) = \operatorname{ord}_{p}(1 - (-x)^{-y}z^{x}) < 48^{36} \frac{p}{\log p} \log^{4} X < < 48^{36} y \log^{4} X < 3 \cdot 48^{72} \log^{8} X.$$
(47)

We distinguish 2 cases:

CASE 2.1. $z \ge 3 \cdot 48^{72} \log^8 X$. In this case, by lemma 2 (1) and inequality (47),

$$\frac{n}{4(p-1)} < \operatorname{ord}_p n! = \operatorname{ord}_p (y^z + (x^y + z^x)) =$$
$$= \operatorname{ord}_p (x^y + z^x) < 3 \cdot 48^{72} \log^8 X.$$

Hence,

٠.,

$$n < 12(p-1) \cdot 48^{72} \log^8 X < 12y \cdot 48^{72} \log^8 X < 36 \cdot 48^{108} \log^{12} X.$$
(48)

From lemma 2 (1) we conclude that

$$X \log 2 < \log(x^{y} + y^{z} + z^{x}) = \log n! < n \log n <$$

$$< 36 \cdot 48^{108} \log(36 \cdot 48^{108}) \log^{13} X < 317 \cdot 48^{109} \log^{13} X.$$
(49)

Let $C = 317 \cdot 48^{109} / \log 2$, and let s = 13. Since $\log C > 182$, it follows, by lemma 2 (2), that

$$X < C \log^{11} C < 458 \cdot 48^{109} \ln^{14} (458 \cdot 48^{109}) < 458 \cdot 48^{109} \cdot 429^{14}.$$

Hence, $\log X < 513$, which is a contradiction.

CASE 2.2. $z < 3 \cdot 48^{72} \log^8 X$. By theorem vdP, it follows that

$$\operatorname{ord}_{2}\left(z^{x} + (x^{y} + y^{z})\right) = \operatorname{ord}_{2}\left(1 - (-x^{y} - y^{z})z^{-X}\right) < < 48^{36} \frac{2}{\log 2} \log(x^{y} + y^{z}) \log^{3} X < 3 \cdot 48^{36} \log(x^{y} + y^{z}) \log^{3} X.$$
(50)

We now bound $\log(x^y+y^z)$. Let $y_1 = 3 \cdot 48^{36} \log^4 X$ and $z_1 = 3 \cdot 48^{72} \log^8 X$. Since $y < y_1$ and $z < z_1$, it follows that

$$\log(x^{y} + y^{z}) < \log(X^{y_{1}} + y_{1}^{z_{1}}) < \log 2 + \max(y_{1} \log X, z_{1} \log y_{1}).$$

Since $z_1 \log y_1 > z_1 > y_1 \log X$, it follows that

$$\log(x^y + y^z) < \log 2 + z_1 \log y_1.$$

From lemma 2 (1) we conclude that

$$\log(x^{y} + y^{z}) < \log 2 + z_{1} \log y_{1} = \log 2 + \frac{z_{1}}{y_{1}} \cdot (y_{1} \log y_{1}) <$$
$$< \log 2 + 48^{36} \log^{4} X \cdot \left(3 \cdot 48^{36} \log(3 \cdot 48^{36})\right) \log^{5} X < 422 \cdot 48^{72} \log^{9} X.$$
(51)

From lemma 1 and inequalities (50) and (51) it follows that

$$n/4 < \operatorname{ord}_2 n! = \operatorname{ord}_2 \left(z^x + (x^y + y^z) \right) < 1266 \cdot 48^{108} \log^{12} X.$$

Hence,

$$n < 5064 \cdot 48^{108} \log^{12} X.$$

By lemma 2 (1), it follows that

$$X\log 2 < \log(x^y + y^z + z^x) = \log n! < n\log n <$$

$$< 5064 \cdot 48^{108} \cdot \log(5064 \cdot 48^{108}) \log^{13} X < 22 \cdot 48^{111} \log^{13} X$$

Let $C = 22 \cdot 48^{111} / \log 2$, and let s = 13. Since $\log C > 182$, it follows, by lemma 2 (2), that

$$X < C \log^{14} C < 22 \cdot 48^{111} \cdot 433^{14}.$$

Hence, $\log X < 518$, which is the final contradiction.

Bibliography

- [1] A. BAKER, G. WÜSTHOLZ, Logarithmic Forms and Group Varieties, J. reine angew. Math. 442 (1993), 19-62.
- [2] J. CASTILLO, Letter to the Editor, Math. Spec. 29 (1997/8), 21.
- [3] P. CASTINI, Letter to the Editor, Math. Spec. 28 (1995/6), 68.
- [4] P. ERDÖS, R. OBLÁTH, Über diophantische Gleichungen der Form $n! = x^p \pm y^p$ und $n! \pm m! = x^p$, Acta Szeged 8 (1937) 241-255.
- [5] K. KASHIHARA, Letter to the Editor, Math. Spec. 28 (1995/6), 20.
- [6] F. LUCA, Products of Factorials in Binary Recurrence Sequences, preprint.
- [7] A. J. VAN DER POORTEN, Linear forms in logarithms in the p-adic case, in: Transcendence Theory, Advances and Applications, Academic Press, London, 1977, 29-57.
- [8] T.N. Shorey, A. J. van der Poorten, R. Tijdeman, A. Schinzel, Applications of the Gel'fond-Baker method to diophantine equations, in: Transcendence Theory, Advances and Applications, Academic Press, London, 1977, 59-77.
- [9] F. SMARANDACHE, Properties of the Numbers, Univ. of Craiova Conf. (1975).
- [10] C. L. STEWART, On divisors of terms of linear recurrence sequences, J. reine angew. Math. 333, (1982), 12-31.

DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY, SYRACUSE, NY 13244-1150 *E-mail address:* florian@ichthus.syr.edu