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Introduction 

In [3] and [5] the authors ask how many primes are of the form xY + yX, 
where gcd (x, y) = 1 and x, y 2: 2. Moreover, Jose Castillo (see [2]) 
asks how many primes are of the Smarandache form xil + X2 X3 + ... + Xn Xl , 

where n > 1, Xl, X2, ••• , Xn > 1 and gcd (Xl, X2, ••• , X n ) = 1 (see [9]). 
In this article we announce a lower bound for the size of the largest 

prime divisor of an expression of the type axY + byx, where ab f= 0, x, y 2: 2 
and gcd (x, y) = l. 

For any finite extension F of Q let dF = [F : Q]. For any algebraic 
number ( E F let NF (() denote the norm of (. 

For any rational integer n let Pen) be the largest prime number P 
diViding n with the convention that P(O) = P(±l) = l. 

Theorem 1. Let a and f3 be algebraic integers with a . f3 f= O. Let 
K = Q[a, f3]. For any two positive integers x and y let X = max (x, V). 
There exist computable positive numbers Cl and C2 depending only on a 
and f3 such that 

whenever x, y 2: 2, gcd (x, y) = 1, and X> C2. 

The proof of Theorem 1 uses lower bounds for linear forms in logarithms 
of algebraiC numbers (see [1] and [7]) as well as an idea of Stewart (see [10]). 

ErdOs and Obllith (see [4]) found all the solutions of the equation n! = 
xP±yP with gcd (x, y) = 1 and p > 2. Moreover, the author (see [6]) showed 
that in every non-degenerate binary recurrence sequence (Un)n~O there are 
only finitely many terms whi.::h are products of factorials. 

We use Theorem 1 to show that for any two given integers a and b with 
ab f= 0, there exist only finitely many numbers of the type axY + byx, where 
x, y 2: 2 and gcd (x, y) = 1, which are products of factorials. 

Let PF be the set of all positive integers which can be written as 
products of factorials; that is 

k 

PF = {w I w = IImj!, for some mj 2: I}. 
j=l 



Theorem 2. Let h, ... , fs E Z[X, Y] be s ~ 1 homogeneous polynomi
als of positive degrees. Assume that h(O, Y) ·h(X, 0) ¢ ° for i = 1, ... , s. 
Then, the equation 

(1) 

with gcd (Xi, Vi) = 1 and Xi, Vi ~ 2, for i = 1, ... , s, has finitely many 
solutions Xl, VI, ... , x s, Ys· Moreover, there exists a computable positive 
number C depending only on the polynomials h, ... , fs such that all solu
tions of equation (1) satisfy max (Xl, YI, ... , Xs , Ys) < C. 

We also have the following inhomogeneous variant of theorem 2. 

Theorem 3. Let !I, ... , fs E Z[X] be s ~ 1 polynomials of positive 
degrees. Assume that fiCO) = 1 (mod 2) for i = 1, ... , s. Let aI, ... , as and 
bI , ... , bs be 2s odd integers. Then, the equation 

(2) 

with gcd (Xi, Vi) = 1 and Xi, Yi ~ 2, for i = 1, ... , s, has finitely many 
solutions Xl, VI, ... , x s , Ys· Moreover, there exists a computable posi
tive number C depending only on the polynomials II, ... , fs and the 2s 
numbers aI, bI. ... , as, bSI such that all solutions of equation (2) satisfy 
max (Xl, VI, ... , Xs, Vs) < C. 

We conclude with the following computational results: 

Theorem 4. All solutions of the equation 

with gcd (x, y) = 1 and x, V ~ 2, 

satisfy max (x, V) < expl77. 

Theorem 5. All solutions of the equation 

with gcd (x, V, z) = 1 and x, V, z ~ 2, 

satisfy max (x, V, z) < exp 518. 

2. Preliminary Results 

The proofs of theorems 1-5 use estimations of linear forms in logarithms 
of algebraic numbers. 

Suppose that (1, ... , (l are algebraic numbers, not ° or 1, of heights not 
exceeding AI, ... , Al , respectively. vVe assume Am ~ ee for m = 1, ... , l. 
Put n = logAI ... logAl . Let F = Q[(l, ... , (d. Let nI, ... , nl be integers, 
not all 0, and let B ~ max Inml. We assume B ~ e2• The following result 
is due to Baker and Wlistholz. 
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Theorem BW ([ID. If (~l ... (;:; f= 1, then 

1(~l ... (~I-ll > iexP(-(16(l + l)dF)2(l+3)nlogB). (3) 

In fact, Baker and Wlirtholz showed that if IOg(l, ... , log(l are any 
fixed values of the logarithms, and A = n1 log (1 + ... + nllog (l f= 0, then 

log IAI > -(16IdF )2(l+2)n log B. (4) 

Now (4) follows easily from (3) via an argument similar to the one used by 
Shorey et al. in their paper [8]. 

We also need the following p-adic analogue of theorem BW which is due 
to van der Poorten. 

Theorem vdP ([7]). Let 11" be a prime ideal of F lying above a prime 
integer p. Then, 

The following estimations are useful in what follows. 

Lemma 1. Let n ~ 2 be an integer, and let p :::; n be a prime number. 
Then 

(i) 
(6) 

(ii) 
n dIn 

4(p -1) :::; or pn. :::; p _ 1· (7) 

Proof. See [6]. 

Lemma 2. (1) Let s ~ 1 be a positive integer. Let C and X be two 
positive numbers such that C > exp s and X > 1. Let y > 0 be such that 
y < ClogS X. Then, ylogy < (ClogC) logS+! X. 

(2) Let s ~ 1 be a positive integer, and let C > exp(s(s + 1)). If X is 
a positive number such that X < C logS X, then X < Clogs+! C. 

Proof. (l) Clearly, 

ylogy < ClogS X(logC + s log logX). 

It suffices to show that 

loge + sloglogX < log C log X. 
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The above inequality is equivalent to 

logC(logX -1) > sloglogX. 

This last inequality is obviously satisfied since log C > s and log X > 
log log X + 1, for all X > 1. 

(2) Suppose that X 2': Clot+! C. Since s 2': 1 and C > exp(s(s + 1)), 
it follows that ClogS+! C > C > exp s. The function + is increasing 

log y 
for y > exp s. Hence, since X 2': Clogs+! C, we conclude that 

Clogs+1 C X 
::; logS X < C. logS (Clogs+! C) 

The above inequality is equivalent to 

( ) 

S < 1, 
log C + (s + 1) log log C 

or 

( 
100" log C) S 

log C < 1 + (s + 1) ~g C . 

By taking logarithms in this last inequality we obtain 

( 
100" 100" C ) 100" log C 

10glogC < slog 1 + (s + 1) ~gC < s(s + 1) ~gC . 

This last inequality is equivalent to log C < s(s + 1), which contradicts the 
fact that C > exp(s(s + 1)). 

3. The Proofs 

The Proof of Theorem 1. By Cl, C2, ... , we shall denote computable 
positive numbers depending only on the numbers a and 13. Let d = dK. Let 

NK (o:;cY + j3yX) = pfl ..... p!rc 

where 2 < PI < P2 < ... < Pk are prime numbers. For J1. = 1, ... , d, let 
a(J.')xY + j3(p.)yX be a conjugate, in K, ofaxY + j3yx. Fix i = 1, ... , k. Let 
7r be a prime ideal of K lying above Pi. We use theorem vdP to bound 
ord1t' (a(J.')xY + j3(J.')yX). We distinguish two cases: 

CASE 1. Pi I xy. Suppose, for example, that Pi I y. Since (x, y) = 1, 
it follows that Pi X x. Hence, by theorem vdP, 

ord. ("C,) xY + I1C, ly<) ~ ord. ("C,) xY) + ord,. (1 -( -~;:; ) y' x -Y) < 
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d P- 4 < CI + C2-
1 

-l-log X. 
OgPi 

(8) 

where Cl = d ·log2 NK(a), and C2 can be computed in terms of a and f3 
using theorem vdP. 

CASE 2. Pi )' xy. In this case 

d P- 4 < CI + C2-
1 

-l-log X. 
OgPi 

(9) 

Combining Case 1 and Case 2 we conclude that 

(10) 

where C3 = 2· max (CI , C2 ). Hence, 

d 

Oi = ordpi (NK(axY + f3YZ)) < C410~ipi log4 X. (11) 

where C4 = dC3. Denote Pk by P. Since Pi ::; P for i = 1, ... , k, it follows, 
by formula (11), that 

k 

log ( NK (axY + f3YZ)) ::; L Oi . log Pi < kC4pd log4 X. (12) 
i=l 

Clearly k ::; 7r(P), where 7r(P) is the number of primes less than or equal to 
P. Combining inequality (12) with the prime number theorem we conclude 
that 

(13) 

We now use theorem BW to find a lower bound for IOg(NK (axY + f3YZ)). 
Suppose that X = y. For Jl. = 1, ... , d, we have 

> C6 + X log 2 - C j log3 X. 

where C6 = min (log la(/') I I Jl. = 1, ... , d), and C7 can be computed using 
theorem BW. Hence, 
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Let Cs = dC6, Cg = dlog2, and ClO = dC7 • Let also Cll be the smallest 
positive number such that 

1 3 
"2Cgy > C lO log Y - Cs, for y> C11 • 

Combining inequalities (13) and (14) it follows that 

pd+l 1 
C5 -

1 
P log4 X > Cs + CgX - C lO log3 X > -CgX, (15) 

og 2 

for X 2: C11. Inequality (15) clearly shows that 

( 
X )m 

p > C12 log3 X ' for X 2: Cll . 

The Proof of Theorem 2. By Cl, C2, ... , we shall denote computable 
positive numbers depending only on the polynomials fl' ... , fs. We may 
assume that iI, ... , fs are linear forms with algebraic coefficients. Let 
h(X, Y) = CtiX + /3iY where Cti/3i :/= 0, and let K = Q[Ctl, /31, ... , Cts , /3sJ· 
Let (Xl, Yl, ... , X s, Ys) be a solution of (1). Equation (1) implies that 

s 

IT N ( Yi + /3 Xi) - I I K Cli X i iYi - nl" .... nk· (16) 
i=l 

We may assume that 2 ::; nl ::; n2 ::; ... ::; nk. Let X = max (Xi, Yi I i = 
1, ... , s). It follows easily, by inequality (10), that 

Hence, 
k 

I: ord2n i! < Cl log4 X. 
i=l 

By lemma 1, it follows that 

(17) 

(18) 

On the other hand, by theorem 1, there exists computable constants C2i 
and C3i , such that 

(19) 
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whenever Xi, Vi 2: 2, gcd (Xi, Vi) = 1 and Xi = max (Xi, Vi) > C3i . Let 
C2 = min (C2i Ii = 1, ... , s) and let C3 = max (C3i I i == 1, ... , s). Suppose 
that X > C3 . From inequality (19) we conclude that 

(20) 

k 

Since P I II nil, it follows that P ::::; nk. Combining inequalities (18) and 
i=1 

(20) we conclude that 

(21) 

Inequality (21) clearly shows that X < C4 • 

The Proof of Theorem 3. By C1, C2 , ••• , we shall denote computable 
positive numbers depending only on the polynomials fl, ... , fs and on the 
numbers al, b1 , ••• , as, bs· Let (Xl, VI, ... , x s, Ys) be a solution of (2). 
Let Xi = max (Xi, Vi), and let X = max (Xi I i = 1, .. , s). Finally, let 

c4 

fi(Z) = Ci IT (Z - (i,j). 
j=l 

s s 

Let K = Q[(i j] l~i~. , and let d = [K : Q], D = ~ di , and C = II Ci. 
, 1 < -<4- L-..J 

_1_ • i=1 i=l 
Let 7r be a prime ideal of K lying above 2. Let Zi = aixfi + biVfi. We 
first bound ord,r!i(Zi). First, notice that ord1\"(aibi) = O. Moreover, since 
1i(0) == 1 (mod 2), it follows that ord1\"«(i,j) = 0, for all j = I, ... , di . vVe 
distinguish 2 cases: 

CASE 1. Assume that 2 1 XiVi. Then fi(Zi) == fiCO) == 1 (mod 2). 
Hence, ord1\"fi(Zi) = O. 

CASE 2. Assume that 2 I Xi· In this case, ord1\"(V) = O. Fix j = 
1, ... , di . Then, 

Since ord1\" (biVfi) = ord1\" «(i,j) = 0, it follows, by theorem vdP, that 

We distinguish 2 cases: 
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CASE 2.1. Vi 2: C1 log3 Xi. In this case, from formula (22) and in
equality (23), it follows that 

ord1r (Zi - (i,j) = ord1r (biVfi - (i,j) < C1 log3 Xi. (24) 

CASE 2.2. Vi < C1 log3 Xi. In this case, 

ord1r (Zi - (i,j) = ord1r (biyfi + (aixfi - (i,j) ). (25) 

Let 6. = aixfi - (i,j. Let H(6.) be the height of 6.. Clearly, 

Hence, 
log(H(6.)) < logC2 + ~Vi log Xi < C3 + C4log4 Xi, 

where C3 = log C2 , and C4 = C1 . max (di I i = 1, ... , s). Since ord1r (bi ) = 
ord1r (yfi) = 0, it follows, by theorem vdP, that 

< Cs log3 X i (C3 +C4Iog4 X i ). (26) 

Let C6 = 2C4CS • Also, let 

From inequalities (23) and (26), it follows that 

for X > C1 • (27) 

Hence, 

II 

ord2(IIfi (Zi)) < Cs log
1 X, for X > C1 , (28) 

.=1 

where Cs = 2max (SDC6, c). Suppose now that 

II k 

II !.(ZJ = II nj!, (29) 
i=1 j=1 

where 2 ~ n1 ~ n2 ~ ... ~ nk. From inequality (28) and lemma I, it follows 
that 

k . 

I: nj < Cg log1 X, 
j=1 
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where Cg = 4CB• Hence, 

k k k k k 

log (II nj!) = Llognj! < Lnjlognj < (Lnj)log(Lnj) < 
j=l j=l j=l j=l j=l 

< Cg log7 X (log Cg + 7 log log X), for X > Ct. (30) 

Let ClO be the smallest positive number ~ C7 such that 

Y > logCg + 7 log logy, for y > ClO. 

From inequality (30), it follows that 

k 

log (II nj!) < CglogB X, whenever X > CIO. (31) 
j=l 

s 

We now bound log(IIfi(Zi)). Fix i = 1, ... , s. Suppose that Yi = Xi. By 
i=l 

Theorem BW, 

(32) 

where Cll = min (Iaill i = 1, ... , s), and Cl2 can be computed using theo
rem BW. Let Cl3 = (log 2)/2, and let Cl4 be the smallest positive number 
~ ClO such that 

From inequality (32) it follows that 

max (log IZil) > CI3X, 

for y > C14 . 

for X> C 14 . (33) 

On the other hand, for each i = 1, ... , s, there exists two computable 
constants Ci and C: such that 

whenever I Zd > C:. 
Let Cl5 = min (Ci I i = 1, ... , s), and let C l6 = max (CI I i = 1, ... , s). 
Finally, let C l7 = max (CI 4, (IOgCI6)/CI3 ). Suppose that X > C17. Since 
Ih(Zi)1 ~ 1, for all i = 1, ... , s, it follows, by inequality (33), that 

s 

log (II h(Zi)) ~ max (log Ifi(Zi)1 i = 1, ... , s) > 
i=l 
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> log CIS + max (loglZill i=l, ... , s) >logC1S +C13X, forX>C17. 

(34) 
From equation (29) and inequalities (31) and (34), it follows that 

for X> ClT. (35) 

Inequality (35) clearly shows that X < CIS· 

The Proof of Theorem 4. Let X = max (x, y). Notice that if 
x Y ± yX E PF, than xy is odd. Hence, by theorem vdP, 

Suppose that 
(37) 

where 2 ~ nl ~ ... ~ nk. From inequality (36) and lemma 1 it follows that 

It follows, by lemma 2 (1), that 

k k k 

10g(xY ± yX) = log II~! = I: logni! < I: ~ log~ < 
i=1 i=1 i=l 

k k 

< (L": ~) log (I: ni) < 12 .4836 10g(12 .4836) . logS X < 1703 .4836 logS X. 
i=l i=1 

(39) 
Suppose now that X = y. Then, by theorem BW, 

> X log 3 -log2 - 4810 log3 X. (40) 

Combining inequalities (39) and (40), we conclude that 

X < X 100" 3 < 100" 2 + 4810 100"3 X + 1703 . 4836 100"S X < 1704 . 4836 100"S X o /:) /:) 0 /:) • 

(41) 
Let C = 1704 . 4836 , and let s = 5. Since log C = log 1704 + 36 log 48 > 30, 
it follows, by lemma 2 (2), that 

(42) 

Hence, log X < 177. 
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The Proof of Theorem 5. Suppose that (x, V, z, n) is a solution 
of xY + VZ + ZX = n!, with gcd (x, V, z) = 1 and min (x, V, z) > 1. Let 
X = max (x, V, z). We assume that logX > 519. Clearly, not all three 
numbers x, V, z can be odd. We may assume that 2 I x. In this case, both 
V and z are odd. By theorem vdP, 

We distinguish two cases: 

CASE 1. V ~ 3· 4836 log4 X. In this case, by lemma 1, 

Hence, 
n < 12 . 4836 log4 X. (45) 

By lemma 2 (1), it follows that 

n log n < 12 . 4836 1og(12 . 4836
) logS X < 1703 . 4836 logS X. (46) 

We conclude that 

X log 2 < log(xY +Vz +ZX) = logn! < nlogn < 1703 .4836 logS X. 

Let C = 1703· 4836 / log 2, and let s = 5. Since log C > 30, it follows, by 
lemma. 2 (2), that 

x < Clog6 C < 2457.4836 .1486
• 

Hence, log X < 178, which is a contradiction. 

CASE 2. V < 3· 4836 1og4 X. Let p be a prime'number such that p I V· 
We first show that pIx. Indeed, assume that pix. Since gcd (x, V, z) = 1, 
it follows that p 1 z. QvVe conclude that pIn!, therefore n < p. Hence, 

n < p ~ y < 3 . 4836 log4 X. 

In pa.rticular, n satisfies inequality (45). From Case 1 we know that log X < 
178, which is a contradiction. 

Suppose now that pIx. Then, by theorem vdP, 

< 4836V log4 X < 3· 4872 log8 X. 

vVe distinguish 2 cases: 

25 

(47) 



CASE 2.1. z ~ 3 . 4872 log8 X. In this case, by lemma 2 (1) and in
equality (47), 

Hence, 

n < 12(p - 1) . 4872 log8 X < 12y· 4872 log8 X < 36· 4810810g12 X. (48) 

From lemma 2 (1) we conclude that 

Xlog2 < log(xY + yZ + ZX) = logn! < nlogn < 

< 36 . 48108 log(36 . 48108) log13 X < 317 .48109 log13 X. (49) 

Let C = 317 . 48109/ log 2, and let s = 13. Since log C > 182, it follows, by 
lemma 2 (2), that 

Hence, log X < 513, which is a contradiction. 

CASE 2.2. z < 3· 4872 log8 X. By theorem vdP, it follows that 

') 

< 4836 10; 2 log(xY + yZ) log3 X < 3 . 4836 10g(xY + yZ) log3 X. (50) 

We now bound !og(xY+VZ
). Let VI = 3· 4836 log4 X and ZI = 3 . 4812 10g8 X. 

Since V < VI and Z < Zt, it follows that 

Since ZI log VI > ZI > VI log X, it follows that 

log(xY +VZ) < log 2 + zllogVt. 

From lemma 2 (1) we conclude that 
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From lemma 1 and inequalities (50) and (51) it follows that 

Hence, 
n < 5064· 48108log12 X. 

By lemma 2 (1), it follows that 

X log 2 < log(xY + yZ + ZX) = logn! < nlogn < 

< 5064.48108 . log(5064. 48108) log13 X < 22· 48111 log13 X. 

Let C = 22 . 48111 / log 2, and let s = 13. Since log C > 182, it follows, by 
lemma 2 (2), that 

X < C log14 C < 22 .48111 .43314 . 

Hence, log X < 518, which is the final contradiction. 
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