Products of Factorials in Smarandache Type Expressions

Florian Luca

Introduction

In [3] and [5] the authors ask how many primes are of the form $x^{y}+y^{x}$, where $\operatorname{gcd}(x, y)=1$ and $x, y \geq 2$. Moreover, Jose Castillo (see [2]) asks how many primes are of the Smarandache form $x_{1}^{x_{2}}+x_{2}{ }^{x_{3}}+\ldots+x_{n}{ }^{x_{1}}$, where $n>1, x_{1}, x_{2}, \ldots, x_{n}>1$ and $\operatorname{gcd}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ (see [9]).

In this article we announce a lower bound for the size of the largest prime divisor of an expression of the type $a x^{y}+b y^{x}$, where $a b \neq 0, x, y \geq 2$ and $\operatorname{gcd}(x, y)=1$.

For any finite extension F of Q let $d_{\mathrm{F}}=[\mathrm{F}: \mathrm{Q}]$. For any algebraic number $\zeta \in \mathrm{F}$ let $N_{\mathrm{F}}(\zeta)$ denote the norm of ζ.

For any rational integer n let $P(n)$ be the largest prime number P dividing n with the convention that $P(0)=P(\pm 1)=1$.

Theorem 1. Let α and β be algebraic integers with $\alpha \cdot \beta \neq 0$. Let $\mathrm{K}=\mathrm{Q}[\alpha, \beta]$. For any two positive integers x and y let $X=\max (x, y)$. There exist computable positive numbers C_{1} and C_{2} depending only on α and β such that

$$
P\left(N_{\mathrm{K}}\left(\alpha x^{y}+\beta y^{x}\right)\right)>C_{1}\left(\frac{X}{\log ^{3} X}\right)^{1 /\left(d_{\mathrm{K}}+1\right)}
$$

whenever $x, y \geq 2, \operatorname{gcd}(x, y)=1$, and $X>C_{2}$.
The proof of Theorem 1 uses lower bounds for linear forms in logarithms of algebraic numbers (see [1] and [7]) as well as an idea of Stewart (see [10]).

Erdös and Obláth (see [4]) found all the solutions of the equation $n!=$ $x^{p} \pm y^{p}$ with gcd $(x, y)=1$ and $p>2$. Moreover, the author (see [6]) showed that in every non-degenerate binary recurrence sequence $\left(u_{n}\right)_{n \geq 0}$ there are only finitely many terms which are products of factorials.

We use Theorem 1 to show that for any two given integers a and b with $a b \neq 0$, there exist only finitely many numbers of the type $a x^{y}+b y^{x}$, where $x, y \geq 2$ and $\operatorname{gcd}(x, y)=1$, which are products of factorials.

Let $\mathcal{P} \mathcal{F}$ be the set of all positive integers which can be written as products of factorials; that is

$$
\mathcal{P F}=\left\{w \mid w=\prod_{j=1}^{k} m_{j}!, \text { for some } m_{j} \geq 1\right\}
$$

Theorem 2. Let $f_{1}, \ldots, f_{s} \in \mathbb{Z}[X, Y]$ be $s \geq 1$ homogeneous polynomials of positive degrees. Assume that $f_{i}(0, Y) \cdot f_{i}(X, 0) \not \equiv 0$ for $i=1, \ldots$, s. Then, the equation

$$
\begin{equation*}
f_{1}\left(x_{1}^{y_{1}}, y_{1}^{x_{1}}\right) \cdot \ldots \cdot f_{s}\left(x_{s}^{y_{s}}, y_{s}^{x_{s}}\right) \in \mathcal{P} \mathcal{F} \tag{1}
\end{equation*}
$$

with $\operatorname{gcd}\left(x_{i}, y_{i}\right)=1$ and $x_{i}, y_{i} \geq 2$, for $i=1, \ldots, s$, has finitely many solutions $x_{1}, y_{1}, \ldots, x_{s}, y_{3}$. Moreover, there exists a computable positive number C depending only on the polynomials f_{1}, \ldots, f_{s} such that all solutions of equation (1) satisfy $\max \left(x_{1}, y_{1}, \ldots, x_{s}, y_{s}\right)<C$.

We also have the following inhomogeneous variant of theorem 2.
Theorem 3. Let $f_{1}, \ldots, f_{s} \in \mathbb{Z}[X]$ be $s \geq 1$ polynomials of positive degrees. Assume that $f_{i}(0) \equiv 1(\bmod 2)$ for $i=1, \ldots$, s. Let a_{1}, \ldots, a_{s} and b_{1}, \ldots, b_{s} be $2 s$ odd integers. Then, the equation

$$
\begin{equation*}
f_{1}\left(a_{1} x_{1}^{y_{1}}+b_{1} y_{1}^{x_{1}}\right) \cdot \ldots \cdot f_{s}\left(a_{s} x_{s}^{y_{s}}+b_{s} y_{s}^{x_{s}}\right) \in \mathcal{P} \mathcal{F} \tag{2}
\end{equation*}
$$

with $\operatorname{gcd}\left(x_{i}, y_{i}\right)=1$ and $x_{i}, y_{i} \geq 2$, for $i=1, \ldots$, s, has finitely many solutions $x_{1}, y_{1}, \ldots, x_{s}, y_{s}$. Moreover, there exists a computable positive number C depending only on the polynomials f_{1}, \ldots, f_{s} and the $2 s$ numbers $a_{1}, b_{1}, \ldots, a_{s}, b_{s}$, such that all solutions of equation (2) satisfy $\max \left(x_{1}, y_{1}, \ldots, x_{s}, y_{s}\right)<C$.

We conclude with the following computational results:
Theorem 4. All solutions of the equation

$$
x^{y} \pm y^{x} \in \mathcal{P F} \quad \text { with } \operatorname{gcd}(x, y)=1 \text { and } x, y \geq 2
$$

satisfy $\max (x, y)<\exp 177$.
Theorem 5. All solutions of the equation

$$
x^{y}+y^{z}+z^{x}=n!\quad \text { with } \operatorname{gcd}(x, y, z)=1 \text { and } x, y, z \geq 2
$$

satisfy $\max (x, y, z)<\exp 518$.

2. Preliminary Results

The proofs of theorems 1-5 use estimations of linear forms in logarithms of algebraic numbers.

Suppose that $\zeta_{1}, \ldots, \zeta_{l}$ are algebraic numbers, not 0 or 1 , of heights not exceeding A_{1}, \ldots, A_{l}, respectively. We assume $A_{m} \geq e^{e}$ for $m=1, \ldots, l$. Put $\Omega=\log A_{1} \ldots \log A_{l}$. Let $\mathrm{F}=\mathrm{Q}\left[\zeta_{1}, \ldots, \zeta_{l}\right]$. Let n_{1}, \ldots, n_{l} be integers, not all 0 , and let $B \geq \max \left|n_{m}\right|$. We assume $B \geq e^{2}$. The following result is due to Baker and Wüstholz.

Theorem BW ([1]). If $\zeta_{1}^{n_{1}} \ldots \zeta_{m}^{n_{1}} \neq 1$, then

$$
\begin{equation*}
\left|\zeta_{1}^{n_{1}} \cdots \zeta_{l}^{n_{l}}-1\right|>\frac{1}{2} \exp \left(-\left(16(l+1) d_{F}\right)^{2(l+3)} \Omega \log B\right) . \tag{3}
\end{equation*}
$$

In fact, Baker and Würtholz showed that if $\log \zeta_{1}, \ldots, \log \zeta_{l}$ are any fixed values of the logarithms, and $\Lambda=n_{1} \log \zeta_{1}+\ldots+n_{l} \log \zeta_{l} \neq 0$, then

$$
\begin{equation*}
\log |\Lambda|>-\left(16 l d_{\mathbf{F}}\right)^{2(l+2)} \Omega \log B . \tag{4}
\end{equation*}
$$

Now (4) follows easily from (3) via an argument similar to the one used by Shorey et al. in their paper [8].

We also need the following p-adic analogue of theorem BW which is due to van der Poorten.

Theorem vdP ([7]). Let π be a prime ideal of F lying above a prime integer p. Then,

$$
\begin{equation*}
\operatorname{ord}_{\pi}\left(\zeta_{1}^{n_{1}} \ldots \zeta_{l}^{n_{l}}-1\right)<\left(16(l+1) d_{F}\right)^{12(l+1)} \frac{p^{d_{F}}}{\log p} \Omega(\log B)^{2} \tag{5}
\end{equation*}
$$

The following estimations are useful in what follows.
Lemma 1. Let $n \geq 2$ be an integer, and let $p \leq n$ be a prime number. Then
(i)

$$
\begin{equation*}
n^{n / 2} \leq n!\leq n^{n} \tag{6}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\frac{n}{4(p-1)} \leq \operatorname{ord}_{p} n!\leq \frac{n}{p-1} \tag{7}
\end{equation*}
$$

Proof. See [6].
Lemma 2. (1) Let $s \geq 1$ be a positive integer. Let C and X be two positive numbers such that $C>\exp s$ and $X>1$. Let $y>0$ be such that $y<C \log ^{s} X$. Then, $y \log y<(C \log C) \log ^{s+1} X$.
(2) Let $s \geq 1$ be a positive integer, and let $C>\exp (s(s+1))$. If X is a positive number such that $X<C \log ^{s} X$, then $X<C \log ^{s+1} C$.

Proof. (1) Clearly,

$$
y \log y<C \log ^{s} X(\log C+s \log \log X) .
$$

It suffices to show that

$$
\log C+s \log \log X<\log C \log X
$$

The above inequality is equivalent to

$$
\log C(\log X-1)>s \log \log X
$$

This last inequality is obviously satisfied since $\log C>s$ and $\log X>$ $\log \log X+1$, for all $X>1$.
(2) Suppose that $X \geq C \log ^{s+1} C$. Since $s \geq 1$ and $C>\exp (s(s+1))$, it follows that $C \log ^{s+1} C>C>\exp s$. The function $\frac{y}{\log ^{s} y}$ is increasing for $y>\exp s$. Hence, since $X \geq C \log ^{s+1} C$, we conclude that

$$
\frac{C \log ^{s+1} C}{\log ^{s}\left(C \log ^{s+1} C\right)} \leq \frac{X}{\log ^{s} X}<C .
$$

The above inequality is equivalent to

$$
\frac{\log ^{s+1} C}{(\log C+(s+1) \log \log C)^{s}}<1
$$

or

$$
\log C<\left(1+(s+1) \frac{\log \log C}{\log C}\right)^{s}
$$

By taking logarithms in this last inequality we obtain

$$
\log \log C<s \log \left(1+(s+1) \frac{\log \log C}{\log C}\right)<s(s+1) \frac{\log \log C}{\log C}
$$

This last inequality is equivalent to $\log C<s(s+1)$, which contradicts the fact that $C>\exp (s(s+1))$.

3. The Proofs

The Proof of Theorem 1. By C_{1}, C_{2}, \ldots, we shall denote computable positive numbers depending only on the numbers α and β. Let $d=d_{\mathrm{K}}$. Let

$$
N_{\mathbf{K}}\left(\alpha: x^{y}+\beta y^{x}\right)=p_{1}^{\delta_{1}} \cdot \ldots \cdot p_{k}^{\delta_{K}}
$$

where $2<p_{1}<p_{2}<\ldots<p_{k}$ are prime numbers. For $\mu=1, \ldots, d$, let $\alpha^{(\mu)} x^{y}+\beta^{(\mu)} y^{x}$ be a conjugate, in K , of $\alpha x^{y}+\beta y^{x}$. Fix $i=1, \ldots, k$. Let π be a prime ideal of K lying above p_{i}. We use theorem vdP to bound $\operatorname{ord}_{\pi}\left(\alpha^{(\mu)} x^{y}+\beta^{(\mu)} y^{x}\right)$. We distinguish two cases:

CASE 1. $p_{i} \mid x y$. Suppose, for example, that $p_{i} \mid y$. Since $(x, y)=1$, it follows that $p_{i} \chi x$. Hence, by theorem vdP ,

$$
\operatorname{ord}_{\pi}\left(\alpha^{(\mu)} x^{y}+\beta^{(\mu)} y^{x}\right)=\operatorname{ord}_{\pi}\left(\alpha^{(\mu)} x^{y}\right)+\operatorname{ord}_{\pi}\left(1-\left(-\frac{\beta^{(\mu)}}{\alpha^{(\mu)}}\right) y^{x} x^{-y}\right)<
$$

$$
\begin{equation*}
<C_{1}+C_{2} \frac{p_{i}^{d}}{\log p_{i}} \log ^{4} X \tag{8}
\end{equation*}
$$

where $C_{1}=d \cdot \log _{2} N_{\mathrm{K}}(\alpha)$, and C_{2} can be computed in terms of α and β using theorem vdP.

CASE 2. $p_{i} X x y$. In this case

$$
\begin{align*}
\operatorname{ord}_{\pi}\left(\alpha^{(\mu)} x^{y}+\beta^{(\mu)} y^{x}\right) & =\operatorname{ord}_{\pi}\left(\alpha^{(\mu)} x^{y}\right)+\operatorname{ord}_{\pi}\left(1-\left(-\frac{\beta^{(\mu)}}{\alpha^{(\mu)}}\right) \cdot \frac{y^{x}}{x^{y}}\right)< \\
& <C_{1}+C_{2} \frac{p_{i}^{d}}{\log p_{i}} \log ^{4} X \tag{9}
\end{align*}
$$

Combining Case 1 and Case 2 we conclude that

$$
\begin{equation*}
\operatorname{ord}_{\pi}\left(\alpha^{(\mu)} x^{y}+\beta^{(\mu)} y^{x}\right)<C_{3} \frac{p_{i}^{d}}{\log p_{i}} \log ^{4} X \tag{10}
\end{equation*}
$$

where $C_{3}=2 \cdot \max \left(C_{1}, C_{2}\right)$. Hence,

$$
\begin{equation*}
\delta_{i}=\operatorname{ord}_{p_{i}}\left(N_{\mathrm{K}}\left(\alpha x^{y}+\beta y^{x}\right)\right)<C_{4} \frac{p_{i}^{d}}{\log p_{i}} \log ^{4} X \tag{11}
\end{equation*}
$$

where $C_{4}=d C_{3}$. Denote p_{k} by P. Since $p_{i} \leq P$ for $i=1, \ldots, k$, it follows, by formula (11), that

$$
\begin{equation*}
\log \left(N_{\mathrm{K}}\left(\alpha x^{y}+\beta y^{x}\right)\right) \leq \sum_{i=1}^{k} \delta_{i} \cdot \log p_{i}<k C_{4} P^{d} \log ^{4} X \tag{12}
\end{equation*}
$$

Clearly $k \leq \pi(P)$, where $\pi(P)$ is the number of primes less than or equal to P. Combining inequality (12) with the prime number theorem we conclude that

$$
\begin{equation*}
\log \left(N_{\mathrm{K}}\left(\alpha x^{y}+\beta y^{x}\right)\right)<C_{5} \frac{P^{d+1}}{\log P} \log ^{4} X \tag{13}
\end{equation*}
$$

We now use theorem BW to find a lower bound for $\log \left(N_{K}\left(\alpha x^{y}+\beta y^{x}\right)\right)$. Suppose that $X=y$. For $\mu=1, \ldots, d$, we have

$$
\begin{aligned}
\log \left(\left|\alpha^{(\mu)} x^{y}+\beta^{(\mu)} y^{x}\right|\right) & =\log \left(\left|\alpha^{(\mu)} x^{y}\right|\right)+\log \left(\left|1-\left(-\frac{\beta^{(\mu)}}{\alpha^{(\mu)}}\right) \frac{y^{x}}{x^{y}}\right|\right)> \\
> & C_{6}+X \log 2-C_{7} \log ^{3} X
\end{aligned}
$$

where $C_{6}=\min \left(\log \left|\alpha^{(\mu)}\right| \mid \mu=1, \ldots, d\right)$, and C_{7} can be computed using theorem BW. Hence,

$$
\begin{equation*}
\log \left(N_{\mathrm{K}}\left(\alpha x^{y}+\beta y^{x}\right)\right)>d C_{6}+d X \log 2-d C_{7} \log ^{3} X \tag{14}
\end{equation*}
$$

Let $C_{8}=d C_{6}, C_{9}=d \log 2$, and $C_{10}=d C_{7}$. Let also C_{11} be the smallest positive number such that

$$
\frac{1}{2} C_{9} y>C_{10} \log ^{3} y-C_{8}, \quad \text { for } y>C_{11}
$$

Combining inequalities (13) and (14) it follows that

$$
\begin{equation*}
C_{5} \frac{P^{d+1}}{\log P} \log ^{4} X>C_{8}+C_{9} X-C_{10} \log ^{3} X>\frac{1}{2} C_{9} X \tag{15}
\end{equation*}
$$

for $X \geq C_{11}$. Inequality (15) clearly shows that

$$
P>C_{12}\left(\frac{X}{\log ^{3} X}\right)^{\frac{1}{d+1}}, \quad \text { for } X \geq C_{11}
$$

The Proof of Theorem 2. By C_{1}, C_{2}, \ldots, we shall denote computable positive numbers depending only on the polynomials f_{1}, \ldots, f_{s}. We may assume that f_{1}, \ldots, f_{s} are linear forms with algebraic coefficients. Let $f_{i}(X, Y)=\alpha_{i} X+\beta_{i} Y$ where $\alpha_{i} \beta_{i} \neq 0$, and let $\mathrm{K}=\mathrm{Q}\left[\alpha_{1}, \beta_{1}, \ldots, \alpha_{s}, \beta_{s}\right]$. Let ($x_{1}, y_{1}, \ldots, x_{s}, y_{s}$) be a solution of (1). Equation (1) implies that

$$
\begin{equation*}
\prod_{i=1}^{s} N_{\mathrm{K}}\left(\alpha_{i} x_{i}^{y_{i}}+\beta_{i} y_{i}^{x_{i}}\right)=n_{1}!\cdot \ldots \cdot n_{k}! \tag{16}
\end{equation*}
$$

We may assume that $2 \leq n_{1} \leq n_{2} \leq \ldots \leq n_{k}$. Let $X=\max \left(x_{i}, y_{i} \mid i=\right.$ $1, \ldots, s$). It follows easily, by inequality (10), that

$$
\begin{equation*}
\operatorname{ord}_{2}\left(\prod_{i=1}^{s} N_{\mathrm{K}}\left(\alpha_{i} x_{i}^{y_{i}}+\beta_{i} y_{i}^{x_{i}}\right)\right)<C_{1} \log ^{4} X \tag{17}
\end{equation*}
$$

Hence,

$$
\sum_{i=1}^{k} \operatorname{ord}_{2} n_{i}!<C_{1} \log ^{4} X
$$

By lemma 1, it follows that

$$
\begin{equation*}
n_{k}<4 C_{1} \log ^{4} X \tag{18}
\end{equation*}
$$

On the other hand, by theorem 1, there exists computable constants $C_{2 i}$ and $C_{3 i}$, such that

$$
\begin{equation*}
P\left(N_{\mathrm{K}}\left(\alpha_{i} x_{i}^{y_{i}}+\beta_{i} y_{i}^{x_{i}}\right)\right)>C_{2 i}\left(\frac{X_{i}}{\log ^{3} X_{i}}\right)^{1 /\left(d_{\mathrm{K}}+1\right)} \tag{19}
\end{equation*}
$$

whenever $x_{i}, y_{i} \geq 2, \operatorname{gcd}\left(x_{i}, y_{i}\right)=1$ and $X_{i}=\max \left(x_{i}, y_{i}\right)>C_{3 i}$. Let $C_{2}=\min \left(C_{2 i} \mid i=1, \ldots, s\right)$ and let $C_{3}=\max \left(C_{3 i} \mid i=1, \ldots, s\right)$. Suppose that $X>C_{3}$. From inequality (19) we conclude that

$$
\begin{equation*}
P\left(\prod_{i=1}^{s} N_{\mathrm{K}}\left(\alpha_{i} x_{i}^{y_{i}}+\beta_{i} y_{i}^{x_{i}}\right)\right)>C_{2}\left(\frac{X}{\log ^{3} X}\right)^{1 /\left(d_{\mathrm{K}}+1\right)} . \tag{20}
\end{equation*}
$$

Since $P \mid \prod_{i=1}^{k} n_{i}$!, it follows that $P \leq n_{k}$. Combining inequalities (18) and (20) we conclude that

$$
\begin{equation*}
C_{2}\left(\frac{X}{\log ^{3} X}\right)^{1 /\left(d_{\mathbf{k}}+1\right)}<4 C_{1} \log ^{4} X \tag{21}
\end{equation*}
$$

Inequality (21) clearly shows that $X<C_{4}$.
The Proof of Theorem 3. By C_{1}, C_{2}, \ldots, we shall denote computable positive numbers depending only on the polynomials f_{1}, \ldots, f_{s} and on the numbers $a_{1}, b_{1}, \ldots, a_{s}, b_{s}$. Let ($x_{1}, y_{1}, \ldots, x_{s}, y_{s}$) be a solution of (2). Let $X_{i}=\max \left(x_{i}, y_{i}\right)$, and let $X=\max \left(X_{i} \mid i=1, \ldots, s\right)$. Finally, let

$$
f_{i}(Z)=c_{i} \prod_{j=1}^{d_{i}}\left(Z-\zeta_{i, j}\right)
$$

Let $K=\mathrm{Q}\left[\zeta_{i, j}\right]_{\substack{1 \leq i \leq s \\ 1 \leq j \leq d_{i}}}$, and let $d=[\mathrm{K}: \mathrm{Q}], D=\sum_{i=1}^{s} d_{i}$, and $c=\prod_{i=1}^{s} c_{i}$.
Let π be a prime ideal of K lying above 2. Let $Z_{i}=a_{i} x_{i}^{y_{i}}+b_{i} y_{i}^{x_{i}}$. We first bound $\operatorname{ord}_{\pi} f_{i}\left(Z_{i}\right)$. First, notice that $\operatorname{ord}_{\pi}\left(a_{i} b_{i}\right)=0$. Moreover, since $f_{i}(0) \equiv 1(\bmod 2)$, it follows that $\operatorname{ord} d_{\pi}\left(\zeta_{i, j}\right)=0$, for all $j=1, \ldots, d_{i}$. We distinguish 2 cases:

CASE 1. Assume that $2 \not\left\langle x_{i} y_{i}\right.$. Then $f_{i}\left(Z_{i}\right) \equiv f_{i}(0) \equiv 1(\bmod 2)$. Hence, $\operatorname{ord}_{\pi} f_{i}\left(Z_{i}\right)=0$.

CASE 2. Assume that $2 \mid x_{i}$. In this case, ord $\operatorname{or}_{\pi}(y)=0$. Fix $j=$ $1, \ldots, d_{i}$. Then,

$$
\begin{equation*}
\operatorname{ord}_{\pi}\left(Z_{i}-\zeta_{i, j}\right)=\operatorname{ord}_{\pi}\left(a_{i} x_{i}^{y_{i}}+\left(b_{i} y_{i}^{x_{i}}-\zeta_{i, j}\right)\right) \tag{22}
\end{equation*}
$$

Since $\operatorname{ord}_{\pi}\left(b_{i} y_{i}^{x_{i}}\right)=\operatorname{ord}_{\pi}\left(\zeta_{i, j}\right)=0$, it follows, by theorem vdP, that

$$
\begin{equation*}
\operatorname{ord}_{\pi}\left(b_{i} y_{i}^{x_{i}}-\zeta_{i, j}\right)=\operatorname{ord}_{\pi}\left(b_{i} y_{i}^{x_{i}}\left(\zeta_{i, j}\right)^{-1}-1\right)<C_{1} \log ^{3} X_{i} \tag{23}
\end{equation*}
$$

We distinguish 2 cases:

CASE 2.1. $y_{i} \geq C_{1} \log ^{3} X_{i}$. In this case, from formula (22) and inequality (23), it follows that

$$
\begin{equation*}
\operatorname{ord}_{\pi}\left(Z_{i}-\zeta_{i, j}\right)=\operatorname{ord}_{\pi}\left(b_{i} y_{i}^{x_{i}}-\zeta_{i, j}\right)<C_{1} \log ^{3} X_{i} \tag{24}
\end{equation*}
$$

CASE 2.2. $y_{i}<C_{1} \log ^{3} X_{i}$. In this case,

$$
\begin{equation*}
\operatorname{ord}_{\pi}\left(Z_{i}-\zeta_{i, j}\right)=\operatorname{ord}_{\pi}\left(b_{i} y_{i}^{x_{i}}+\left(a_{i} x_{i}^{y_{i}}-\zeta_{i, j}\right)\right) . \tag{25}
\end{equation*}
$$

Let $\Delta=a_{i} x_{i}^{y_{i}}-\zeta_{i, j}$. Let $H(\Delta)$ be the height of Δ. Clearly,

$$
H(\Delta)<C_{2} x_{i}^{d_{i} y_{i}} .
$$

Hence,

$$
\log (H(\Delta))<\log C_{2}+d_{i} y_{i} \log x_{i}<C_{3}+C_{4} \log ^{4} X_{i}
$$

where $C_{3}=\log C_{2}$, and $C_{4}=C_{1} \cdot \max \left(d_{i} \mid i=1, \ldots, s\right)$. Since $\operatorname{ord}_{\pi}\left(b_{i}\right)=$ $\operatorname{ord}_{\pi}\left(y_{i}^{x_{i}}\right)=0$, it follows, by theorem vdP, that

$$
\begin{gather*}
\operatorname{ord}_{\pi}\left(Z_{i}-\zeta_{i, j}\right)=\operatorname{ord}_{\pi}\left(1-b_{i}^{-1} y_{i}^{-x_{i}} \Delta\right)<C_{5} \log y_{i} \log (H(\Delta)) \log ^{2} x_{i}< \\
<C_{5} \log ^{3} X_{i}\left(C_{3}+C_{4} \log ^{4} X_{i}\right) \tag{26}
\end{gather*}
$$

Let $C_{6}=2 C_{4} C_{5}$. Also, let

$$
C_{7}=\exp \left(\left(C_{3} / C_{4}\right)^{1 / 4}\right)
$$

From inequalities (23) and (26), it follows that

$$
\begin{equation*}
\left.\operatorname{ord}_{\pi}\left(Z_{i}-\zeta_{i, j}\right)\right)<C_{6} \log ^{7} X, \quad \text { for } X>C_{7} \tag{27}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\operatorname{ord}_{2}\left(\prod_{i=1}^{s} f_{i}\left(Z_{i}\right)\right)<C_{8} \log ^{7} X, \quad \text { for } X>C_{7} \tag{28}
\end{equation*}
$$

where $C_{8}=2 \max \left(s D C_{6}, c\right)$. Suppose now that

$$
\begin{equation*}
\prod_{i=1}^{s} f_{i}\left(Z_{i}\right)=\prod_{j=1}^{k} n_{j}! \tag{29}
\end{equation*}
$$

where $2 \leq n_{1} \leq n_{2} \leq \ldots \leq n_{k}$. From inequality (28) and lemma 1 , it follows that

$$
\sum_{j=1}^{k} n_{j}<C_{9} \log ^{7} X
$$

where $C_{9}=4 C_{8}$. Hence,

$$
\begin{gather*}
\log \left(\prod_{j=1}^{k} n_{j}!\right)=\sum_{j=1}^{k} \log n_{j}!<\sum_{j=1}^{k} n_{j} \log n_{j}<\left(\sum_{j=1}^{k} n_{j}\right) \log \left(\sum_{j=1}^{k} n_{j}\right)< \\
<C_{9} \log ^{7} X\left(\log C_{9}+7 \log \log X\right), \quad \text { for } X>C_{7} \tag{30}
\end{gather*}
$$

Let C_{10} be the smallest positive number $\geq C_{7}$ such that

$$
y>\log C_{9}+7 \log \log y, \quad \text { for } y>C_{10} .
$$

From inequality (30), it follows that

$$
\begin{equation*}
\log \left(\prod_{j=1}^{k} n_{j}!\right)<C_{9} \log ^{8} X, \quad \text { whenever } X>C_{10} \tag{31}
\end{equation*}
$$

We now bound $\log \left(\prod_{i=1}^{s} f_{i}\left(Z_{i}\right)\right)$. Fix $i=1, \ldots$, s. Suppose that $y_{i}=X_{i}$. By Theorem BW,

$$
\begin{gather*}
\log \left|Z_{i}\right|=\log \left|a_{i} x_{i}^{y_{i}}+b_{i} y_{i}^{x_{i}}\right|=\log \left(\left|a_{i}\right| x_{i}^{y_{i}}\right)+\log \left(\left|1-\left(-\frac{b_{i}}{a_{i}}\right) y_{i}^{x_{i}} x_{i}^{-y_{i}}\right|\right)> \\
>C_{11}+X_{i} \log 2-C_{12} \log ^{3} X_{i} \tag{32}
\end{gather*}
$$

where $C_{11}=\min \left(\left|a_{i}\right| \mid i=1, \ldots, s\right)$, and C_{12} can be computed using theorem BW. Let $C_{13}=(\log 2) / 2$, and let C_{14} be the smallest positive number $\geq C_{10}$ such that

$$
C_{11}+y \log 2-C_{12} \log ^{3} y>C_{13} y, \quad \text { for } y>C_{14}
$$

From inequality (32) it follows that

$$
\begin{equation*}
\max \left(\log \left|Z_{i}\right|\right)>C_{13} X, \quad \text { for } X>C_{14} \tag{33}
\end{equation*}
$$

On the other hand, for each $i=1, \ldots, s$, there exists two computable constants C_{i} and C_{i}^{\prime} such that

$$
\left|f_{i}\left(Z_{i}\right)\right|>C_{i}\left|Z_{i}\right|^{d_{i}}, \quad \text { whenever }\left|Z_{i}\right|>C_{i}^{\prime}
$$

Let $C_{15}=\min \left(C_{i} \mid i=1, \ldots, s\right)$, and let $C_{16}=\max \left(C_{i}^{\prime} \mid i=1, \ldots, s\right)$. Finally, let $C_{17}=\max \left(C_{14},\left(\log C_{16}\right) / C_{13}\right)$. Suppose that $X>C_{17}$. Since $\left|f_{i}\left(Z_{i}\right)\right| \geq 1$, for all $i=1, \ldots, s$, it follows, by inequality (33), that

$$
\log \left(\prod_{i=1}^{s} f_{i}\left(Z_{i}\right)\right) \geq \max \left(\log \left|f_{i}\left(Z_{i}\right)\right| i=1, \ldots, s\right)>
$$

$$
\begin{equation*}
>\log C_{15}+\max \left(\log \left|Z_{i}\right| \mid i=1, \ldots, s\right)>\log C_{15}+C_{13} X, \quad \text { for } X>C_{17} \tag{34}
\end{equation*}
$$

From equation (29) and inequalities (31) and (34), it follows that

$$
\begin{equation*}
\log C_{15}+C_{13} X<C_{9} \log ^{8} X, \quad \text { for } X>C_{17} \tag{35}
\end{equation*}
$$

Inequality (35) clearly shows that $X<C_{18}$.
The Proof of Theorem 4. Let $X=\max (x, y)$. Notice that if $x^{y} \pm y^{x} \in \mathcal{P F}$, than $x y$ is odd. Hence, by theorem vdP,

$$
\begin{equation*}
\operatorname{ord}_{2}\left(x^{y} \pm y^{x}\right)=\operatorname{ord}_{2}\left(1-(\mp y)^{x} x^{-y}\right)<48^{36} \cdot \frac{2}{\log 2} \cdot \log ^{4} X . \tag{36}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
x^{y} \pm y^{x}=n_{1}!\cdot \ldots \cdot n_{k}!, \tag{37}
\end{equation*}
$$

where $2 \leq n_{1} \leq \ldots \leq n_{k}$. From inequality (36) and lemma 1 it follows that

$$
\begin{equation*}
\sum_{i=1}^{k} n_{i} \leq 4\left(\sum_{i=1}^{k} \operatorname{ord}_{2}\left(n_{i}!\right)\right)<48^{36} \cdot \frac{8}{\log 2} \cdot \log ^{4} X<12 \cdot 48^{36} \cdot \log ^{4} X \tag{38}
\end{equation*}
$$

It follows, by lemma 2 (1), that

$$
\begin{gather*}
\log \left(x^{y} \pm y^{x}\right)=\log \prod_{i=1}^{k} n_{i}!=\sum_{i=1}^{k} \log n_{i}!<\sum_{i=1}^{k} n_{i} \log n_{i}< \\
<\left(\sum_{i=1}^{k} n_{i}\right) \log \left(\sum_{i=1}^{k} n_{i}\right)<12 \cdot 48^{36} \log \left(12 \cdot 48^{36}\right) \cdot \log ^{5} X<1703 \cdot 48^{36} \log ^{5} X . \tag{39}
\end{gather*}
$$

Suppose now that $X=y$. Then, by theorem BW,

$$
\begin{align*}
\log \left|x^{y} \pm y^{x}\right| & \geq \log \left|x^{y}-y^{x}\right|=\log \left(x^{y}\right)+\log \left|1-y^{x} x^{-y}\right|> \\
& >X \log 3-\log 2-48^{10} \log ^{3} X . \tag{40}
\end{align*}
$$

Combining inequalities (39) and (40), we conclude that

$$
\begin{equation*}
X<X \log 3<\log 2+48^{10} \log ^{3} X+1703 \cdot 48^{36} \log ^{5} X<1704 \cdot 48^{36} \log ^{5} X \tag{41}
\end{equation*}
$$

Let $C=1704 \cdot 48^{36}$, and let $s=5$. Since $\log C=\log 1704+36 \log 48>30$, it follows, by lemma 2 (2), that

$$
\begin{equation*}
X<C \cdot \log ^{6} C<1704 \cdot 48^{36} \cdot 147^{6} \tag{42}
\end{equation*}
$$

Hence, $\log X<177$.

The Proof of Theorem 5. Suppose that (x, y, z, n) is a solution of $x^{y}+y^{z}+z^{x}=n!$, with $\operatorname{gcd}(x, y, z)=1$ and $\min (x, y, z)>1$. Let $X=\max (x, y, z)$. We assume that $\log X>519$. Clearly, not all three numbers x, y, z can be odd. We may assume that $2 \mid x$. In this case, both y and z are odd. By theorem vdP ,

$$
\begin{equation*}
\operatorname{ord}_{2}\left(y^{z}+z^{x}\right)=\operatorname{ord}_{2}\left(1-(-y)^{-z} z^{x}\right)<48^{36} \frac{2}{\log 2} \log ^{4} X<3 \cdot 48^{36} \log ^{4} X \tag{43}
\end{equation*}
$$

We distinguish two cases:
CASE 1. $y \geq 3 \cdot 48^{36} \log ^{4} X$. In this case, by lemma 1,

$$
\begin{equation*}
n / 4 \leq \operatorname{ord}_{2} n!=\operatorname{ord}_{2}\left(x^{y}+y^{z}+z^{x}\right)=\operatorname{ord}_{2}\left(y^{z}+z^{x}\right)<3 \cdot 48^{36} \log ^{4} X \tag{44}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
n<12 \cdot 48^{36} \log ^{4} X \tag{45}
\end{equation*}
$$

By lemma 2 (1), it follows that

$$
\begin{equation*}
n \log n<12 \cdot 48^{36} \log \left(12 \cdot 48^{36}\right) \log ^{5} X<1703 \cdot 48^{36} \log ^{5} X \tag{46}
\end{equation*}
$$

We conclude that

$$
X \log 2<\log \left(x^{y}+y^{z}+z^{x}\right)=\log n!<n \log n<1703 \cdot 48^{36} \log ^{5} X
$$

Let $C=1703 \cdot 48^{36} / \log 2$, and let $s=5$. Since $\log C>30$, it follows, by lemma 2 (2), that

$$
X<C \log ^{6} C<2457 \cdot 48^{36} \cdot 148^{6} .
$$

Hence, $\log X<178$, which is a contradiction.
CASE 2. $y<3 \cdot 48^{36} \log ^{4} X$. Let p be a prime number such that $p \mid y$. We first show that $p \nmid x$. Indeed, assume that $p \mid x$. Since $\operatorname{gcd}(x, y, z)=1$, it follows that $p \nmid z$. QWe conclude that $p \nmid n$!, therefore $n<p$. Hence,

$$
n<p \leq y<3 \cdot 48^{36} \log ^{4} X
$$

In particular, n satisfies inequality (45). From Case 1 we know that $\log X<$ 178, which is a contradiction.

Suppose now that $p \not X x$. Then, by theorem vdP,

$$
\begin{align*}
\operatorname{ord}_{p}\left(x^{y}+z^{x}\right) & =\operatorname{ord}_{p}\left(1-(-x)^{-y} z^{x}\right)<48^{36} \frac{p}{\log p} \log ^{4} X< \\
& <48^{36} y \log ^{4} X<3 \cdot 48^{72} \log ^{8} X \tag{47}
\end{align*}
$$

We distinguish 2 cases:

CASE 2.1. $z \geq 3 \cdot 48^{72} \log ^{8} X$. In this case, by lemma 2 (1) and inequality (47),

$$
\begin{gathered}
\frac{n}{4(p-1)}<\operatorname{ord}_{p} n!=\operatorname{ord}_{p}\left(y^{z}+\left(x^{y}+z^{x}\right)\right)= \\
=\operatorname{ord}_{p}\left(x^{y}+z^{x}\right)<3 \cdot 48^{72} \log ^{8} X
\end{gathered}
$$

Hence,

$$
\begin{equation*}
n<12(p-1) \cdot 48^{72} \log ^{8} X<12 y \cdot 48^{72} \log ^{8} X<36 \cdot 48^{108} \log ^{12} X \tag{48}
\end{equation*}
$$

From lemma 2 (1) we conclude that

$$
\begin{gather*}
X \log 2<\log \left(x^{y}+y^{z}+z^{x}\right)=\log n!<n \log n< \\
<36 \cdot 48^{108} \log \left(36 \cdot 48^{108}\right) \log ^{13} X<317 \cdot 48^{109} \log ^{13} X . \tag{49}
\end{gather*}
$$

Let $C=317 \cdot 48^{109} / \log 2$, and let $s=13$. Since $\log C>182$, it follows, by lemma 2 (2), that

$$
X<C \log ^{11} C<458 \cdot 48^{109} \ln ^{14}\left(458 \cdot 48^{109}\right)<458 \cdot 48^{109} \cdot 429^{14}
$$

Hence, $\log X<513$, which is a contradiction.
CASE 2.2. $z<3 \cdot 48^{72} \log ^{8} X$. By theorem vdP, it follows that

$$
\begin{gather*}
\operatorname{ord}_{2}\left(z^{x}+\left(x^{y}+y^{z}\right)\right)=\operatorname{ord}_{2}\left(1-\left(-x^{y}-y^{z}\right) z^{-x}\right)< \\
<48^{36} \frac{2}{\log 2} \log \left(x^{y}+y^{z}\right) \log ^{3} X<3 \cdot 48^{36} \log \left(x^{y}+y^{z}\right) \log ^{3} X . \tag{50}
\end{gather*}
$$

We now bound $\log \left(x^{y}+y^{z}\right)$. Let $y_{1}=3 \cdot 48^{36} \log ^{4} X$ and $z_{1}=3 \cdot 48^{72} \log ^{8} X$. Since $y<y_{1}$ and $z<z_{1}$, it follows that

$$
\log \left(x^{y}+y^{z}\right)<\log \left(X^{y_{1}}+y_{1}^{z_{1}}\right)<\log 2+\max \left(y_{1} \log X, z_{1} \log y_{1}\right)
$$

Since $z_{1} \log y_{1}>z_{1}>y_{1} \log X$, it follows that

$$
\log \left(x^{y}+y^{z}\right)<\log 2+z_{1} \log y_{1}
$$

From lemma 2 (1) we conclude that

$$
\begin{gather*}
\log \left(x^{y}+y^{z}\right)<\log 2+z_{1} \log y_{1}=\log 2+\frac{z_{1}}{y_{1}} \cdot\left(y_{1} \log y_{1}\right)< \\
<\log 2+48^{36} \log ^{4} X \cdot\left(3 \cdot 48^{36} \log \left(3 \cdot 48^{36}\right)\right) \log ^{5} X<422 \cdot 48^{72} \log ^{9} X . \tag{51}
\end{gather*}
$$

From lemma 1 and inequalities (50) and (51) it follows that

$$
n / 4<\operatorname{ord}_{2} n!=\operatorname{ord}_{2}\left(z^{x}+\left(x^{y}+y^{z}\right)\right)<1266 \cdot 48^{108} \log ^{12} X
$$

Hence,

$$
n<5064 \cdot 48^{108} \log ^{12} X
$$

By lemma 2 (1), it follows that

$$
\begin{gathered}
X \log 2<\log \left(x^{y}+y^{z}+z^{x}\right)=\log n!<n \log n< \\
<5064 \cdot 48^{108} \cdot \log \left(5064 \cdot 48^{108}\right) \log ^{13} X<22 \cdot 48^{111} \log ^{13} X .
\end{gathered}
$$

Let $C=22 \cdot 48^{111} / \log 2$, and let $s=13$. Since $\log C>182$, it follows, by lemma. 2 (2), that

$$
X<C \log ^{14} C<22 \cdot 48^{111} \cdot 433^{14} .
$$

Hence, $\log X<518$, which is the final contradiction.

Bibliography

[1] A. BAKER, G. WÜSThOlZ, Logarithmic Forms and Group Varieties, J. reine angew. Math. 442 (1993), 19-62.
[2] J. CaSTillo, Letter to the Editor, Math. Spec. 29 (1997/8), 21.
[3] P. Castini, Letter to the Editor, Math. Spec. 28 (1995/6), 68.
[4] P. Erdōs, R. Obláth, Über diophantische Gleichungen der Form $n!=x^{p} \pm y^{p}$ und $n!\pm m!=x^{p}$, Acta Szeged 8 (1937) 241-255.
[5] K. Kashinara, Letter to the Editor, Math. Spec. 28 (1995/6), 20.
[6] F. Luca, Products of Factorials in Binary Recurrence Sequences, preprint.
[7] A. J. VAN DER POorten, Linear forms in logarithms in the p-adic case, in: Transcendence Theory, Advances and Applications, Academic Press, London, 1977, 29-57.
[8] T.N. Shorey, A. J. van der Poorten, R. Tijdeman, A. Schinzel, Applications of the Gel'fond-Baker method to diophantine equations, in: Transcendence Theory, Advances and Applications, Academic Press, London, 1977, 59-77.
[9] F. Smarandache, Properties of the Numbers, Univ. of Craiova Conf. (1975).
[10] C. L. Stewart, On divisors of terms of linear recurrence sequences, J. reine angew. Math. 333, (1982), 12-31.

Department of Mathematics, Syracuse University, SYRaCUSE, NY 13244-1150

E-mail address: florian@ichthus.syr.edu

