PROOF OF THE DEPASCALISATION THEOREM
Amarnath Murthy, S.E.(E\&T), WLS, Oil and Natural Gas Corporation Ltd., Sabarmati, Ahmedabad,-380005 INDIA.

In [1] we have defined Pascalisation as follows:
Let b_{1}, b_{2}, \ldots be a base sequence. Then the Smarandache Pascal derived

sequence

$\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots$ is defined as
$d_{1}=b_{1}$
$\mathrm{d}_{2}=\mathrm{b}_{1}+\mathrm{b}_{2}$
$\mathrm{d}_{3}=\mathrm{b}_{1}+2 \mathrm{~b}_{2}+\mathrm{b}_{3}$
$d_{4}=b_{1}+3 b_{2}+3 b_{3}+b_{4}$

$$
\mathrm{d}_{\mathrm{n}+1}=\sum_{\mathrm{k}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathbf{k}} \cdot \mathrm{b}_{\mathbf{k}+1}
$$

Now Given S_{d} the task ahead is to find out the base sequence S_{b}. We call the process of extracting the base sequence from the Pascal derived sequence as
Depascalsation. The interesting observation is that this again involves the
Pascal's triangle, but with a difference.
On expressing b_{k} 's in terms of d_{k} 's We get
$\mathrm{b}_{1}=\mathrm{d}_{1}$
$\mathrm{b}_{2}=-\mathrm{d}_{1}+\mathrm{d}_{2}$
$\mathrm{b}_{3}=\mathrm{d}_{1}-2 \mathrm{~d}_{2}+\mathrm{d}_{3}$
$b_{4}=-d_{1}+3 d_{2}-3 d_{3}+d_{4}$
which suggests the possibility of

$$
b_{n+1}=\sum_{k=0}^{\sum(-1)^{n+k} \cdot{ }^{n} C_{k} \cdot d_{k+1} .}
$$

This I call as Depascalisation Theorem.
PROOF: We shall prove it by induction.
Let the proposition be true for all the numbers $1 \leq k+1$. Then we have
$b_{k+1}={ }^{k} C_{0}(-1)^{k+2} d_{1}+{ }^{k} C_{1}(-1)^{k+1} d_{2}+\ldots+{ }^{k} C_{k}(-1)^{2}$
Also we have
$d_{k+2}={ }^{k+1} C_{0} b_{1}+{ }^{k+1} C_{1} b_{2}+\ldots+{ }^{k+1} C_{r} b_{r+1}+\ldots+{ }^{k+1} C_{k+1} b_{k+2}$, which gives
$b_{k+2}=(-1)^{k+1} C_{0} b_{1}-{ }^{k+1} C_{1} b_{2}-\ldots-^{k+1} C_{r} b_{r+1}-\ldots+d_{k+2}$
substituting the values of b_{1}, b_{2}, \ldots etc. in terms of d_{1}, d_{2}, \ldots, we get the
coefficient of d_{1} as
$\left.(-1)^{k+1} C_{0}+\left(-{ }^{k+1} C_{1}\right)\left(-{ }^{1} C_{0}\right)+\left(-{ }^{k+1} C_{2}\right)\left({ }^{2} C_{0}\right)+\ldots+(-1)^{r} \cdot{ }^{k+1} C_{r}\right)\left({ }^{r} C_{0}\right)+\ldots+(-1)$
${ }^{k+1}\left({ }^{k+1} C_{k}\right)\left({ }^{k} C_{0}\right)$
$-{ }^{k+1} C_{0}{ }^{+}{ }^{\mathbf{k}+1} C_{1} \cdot{ }^{1} C_{0}-{ }^{k+1} C_{2} .{ }^{2} C_{0}+\ldots+(-1)^{r} .{ }^{k+1} C_{r} \cdot{ }^{r} C_{0}+\ldots+(-1)^{k+1} \cdot{ }^{k+1} C_{k} \cdot{ }^{k} C_{0}$
similarly the coefficient of d_{2} is
${ }^{k+1} C_{1} \cdot{ }^{1} C_{1}+{ }^{k+1} C_{2} \cdot{ }^{2} C_{1}+\ldots+(-1)^{n+1} .{ }^{k+1} C_{r} \cdot{ }^{r} C_{1}+\ldots+(-1)^{k+1} \cdot{ }^{k+1} C_{k} \cdot{ }^{k} C_{1}$
on similar lines we get the coefficient of $\mathrm{d}_{\mathrm{m}+1}$ as

$$
\begin{aligned}
&{ }^{k+1} C_{m} \cdot{ }^{m} C_{m}+{ }^{k+1} C_{m+1} \cdot{ }^{m+1} C_{m}-\ldots+(-1)^{r+m} \cdot{ }^{k+1} C_{r+m} \cdot{ }^{r+m} C_{m}+\ldots+(-1)^{k+m} \cdot{ }^{k+1} C_{k} . \\
&= \sum_{h=0}^{k-m}(-1)^{k+1} \\
&{ }^{k}=0
\end{aligned}
$$

$$
\underset{\sum_{h=0}^{(k+1)-m}}{(-1)^{h+1}{ }_{k+1}^{k+1} C_{m+h} \cdot{ }^{m+h} C_{m} \quad--\quad(-1)^{k+m} \cdot{ }^{k+1} C_{k+1} \cdot{ }^{k+1} C_{m} .}
$$

Applying theorem $\{4.2\}$ of reference [2], in (1) we get
$={ }^{k+1} C_{m}\{1+(-1)\}^{k+1-m}+(-1)^{k+m} \cdot{ }^{k+1} C_{m}$
$=(-1)^{k+m} \cdot{ }^{k+1} C_{m}$
which shows that the proposition is true for $(\mathrm{k}+2)$ as well. The proposition has already been verified for $k+1=3$, hence by induction the proof is complete. In matrix notation if we write
$\left[b_{1}, b_{2}, \ldots b_{n}\right]_{1 \times n} *\left[p_{i j}\right]_{\mathrm{nxn}}^{\prime}=\left[d_{1}, d_{2}, \ldots d_{n}\right]_{1 \times n}$
where $\left[p_{i j}\right]_{\mathrm{nxn}}^{\prime}=$ the transpose of $\left[\mathrm{p}_{\mathrm{i}, \mathrm{j}}\right]_{\mathrm{nxn}}$ and
[$\left.\mathrm{p}_{\mathrm{ij}}\right]_{\mathrm{xxn}}$ is given by $\mathrm{p}_{\mathrm{i},}={ }^{i-1} \mathrm{C}_{\mathrm{j}-1}$ if $\mathrm{i} \leq \mathrm{j}$ else $\mathrm{p}_{\mathrm{i}, \mathrm{j}}=0$
Then we get the following result
If $\left[q_{i j}\right]_{n \times 1}$ is the transpose of the inverse of $\left[p_{i j}\right]_{n \times n}$ Then $q_{i j}=(-1)^{1+i} \cdot{ }^{-1} C_{j-1}$
We also have
$\left[b_{1}, b_{2}, \ldots b_{n}\right]^{*}\left[q_{i j}\right]_{n \times n}^{\prime}=\left[d_{1}, d_{2}, \ldots d_{n}\right]$
where $\left[q_{i j}\right]_{n \times n}^{\prime}=$ The Transpose of $\left[q_{i j}\right]_{n \times n}$

References:
[1] Amarnath Murthy, ' Smarandache Pascal Derived Sequences', SNJ, March ,2000.
[2] Amarnath Murthy, More Results and Applications of the Smarandache Star Function, SNJ, VOL.11, No. 1-2-3, 2000.

