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ABSTRCT: In [1] we defme SMARANDACHE FACTOR PARTITION 

FUNCTION, as follows: Let aI, al , a3 , ... <Xr be a set of r natural 

numbers and PI, Pl, P3 , ... Pr be arbitrarily chosen distinct primes then 

F(a} , a2, <X3, ... a r) called the Smarandache Factor Partition of (a}, a2, a3 

, ••. <Xc) is defrned as the number of ways in which the number 

a.} a.2 a.3 a.r 

N PI P2 P3 . .. pr could be expressed as the 

product of its' divisors. For simplicity, we denote F( a I , a2, a3 , .. 

. 
. a r ) = F eN) ,where 

0.1 0.2 0.3 a.-
N = PI P2 P3 ... Pc 

au 
pn 

and Pr is the rth prime. PI =2, P2 = 3 etc. 

Also for the case 

al = a2 = a3 = ... = a r = ... = an = 1 
Let us denote 

F ( 1 , 1, 1, 1, 1. .. ) - F ( 1 #n) 
~ n - ones ~ 

In [2] we define The Generalized Smarandache Star 

Function as follows: 
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Smarandache Star Function 

(I) F'*(N} = LF'(dr} where drl N 
dIN 

(2) F'** ( N) = L F'* (d r ) 

d,JN 

dr ranges over all the divisors of N. 

If N is a square free number with n prime factors , let us denote 

F'** (N) =F** (l#n) 

Smarandache Generalised Star Function 

(3) F,n*(N) = L F'(n-l)* (dr ) 

d,fN 

and dr ranges over all the dIvisors ofN. 

For simplicity we denote 

n>l 

F'(NPIP2 .. ·Pn) = F'(N@l#n) , where 

( N,Pi) = 1 for i = 1 to n and each Pi is a prime. 

F'(N@l#n) is nothing but the Smarandache factor partition of (a 

number N multiplied by n primes which are coprime to N). 

In [2] I had derived a general result on the Smarandache 

Generalised Star Function. In the· present note we defme 

SMARANDACHE STAR TRIANGLE' (SST) and derive some properties 

of SST. 

DISCUSSION: 
DEFI~"1TION: 'Sl\1ARANDACHE STAR TRIANGLE' (SST) 
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As established in [2] 
111 

3(n.rn) = (lIm!) L (_l)m-k .mCk.~ ---------- (1) 
k=1 

we have 3(n,n) = 3(n,1) = 1 and 3(n,m) = 0 for m > n. Now if one 

arranges these elements as follows 

3(1,1) 

3(2,1) 3(2,2) 

3(3,1) ~3,2) 3(3,3) 

~n,l) ~n,2) ... ~n,n-l) ~n,n) 

we get the following triangle which we call as the 'SMARANDACHE 

STAR TRIANGLE' in which ~r.rn) is the mth element of the rth row and is 

given by (A) above. It is to be noted here that the elements are the Stirling 

numbers of the flrst kind. 

1 

1 1 

1 3 1 

1 7 6 1 

1 15 25 10 1 
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Some propoerties of the SST. 

(1) The elements of the fIrst column and the last element of each row is 

unity. 

(2) The elements of the second column are 2n
-
1 

- 1 ,where n is the row 

number. 

(3) Sum of all the elements of the nth row is the nth Bell. 

PROOF: 
From tht:ort:m(3.1) of Rt:f; [2] wt: havt: 

n 

·F'(N@l#n) = F'(NP1P2 .. ·Po) 

if N = 1 we get F,m*(l) = F'(m-1)*(l) = F'(m-2)*(I) = ... = F'(l) = 1 

hence n 

f'(PIP2 .. ·Pn) = 2: acn,m) 
r=O 

(4)The elements of a row can be obtained by the following reduction formula 

S(n+l,m+l) = s(n,m) + (m+ 1) . S(n+l,m+l) 

instead of having to use the formula (4.5). 

(5) If N =p in theorem (3.1) Ref~[2] we get F'm*(p) = m + 1. Hence 

n 

- 2: 3.(u.m) F,m:t-(N) 
m=l 

n 

or Bn+1 - I (m+l) acn.m) 
m=l 
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(6) Elements of second leading diagonal are triangular numbers in their 

natural order. 

(7) If p is a prime, p divides all the elements of the pth row except the r t and 

the last, which are unity. This has been established in the following theorem. 

THEOREM(l.l): 

a(p,r)== 0 (mod p) if P is a prime and 1 < r < p 

Proof: 

Also, 

III 

~p.r) = (l/r!) L (-Irk .rCk .kP 

k=} 

~p.r) = 

r-l 

(l/(r-l)!) L (_ltl-k .r-IC~ .(k+l)p-l 
k=0 

r-l 

a{p,r) = (l/(r-l)!) I [(-lt l
-
k .r-1Ck • {(k+I)P-l -I}] + 

k=O 

r-I 
(l/(r-I)!) L (_lt l

-
k .r-1Ck 

k=Q 

applying Fermat's little theorem, we get 

~p,r) = a multiple of p + 0 

COROLLARY: (1.1) 

F(l#p) == 2 (mod p) 

~p,l) = ~p,p) = 1 
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F( l#p) = 

. F(l#p) == 2 (mod p) 

p-l 

2: au,,k) + 2 
k=2 

(8) The coefficient of the rth term b(n.r) in the expansion of xn as 

is equal to ~n,r) . 

THEOREM(1.2): B3n+2 is even else Bk is odd. 

From theorem (2.5) in REF. [1] we have 

F'(Nqlq2) = F'*(N) + F'**(N) where ql and q2 are pnme. 

and (N,q:) = (N,q2) = 1 

let N = PIP2P3 ... Pn then one can write 

or F(l#(n+2» = F(1#(n+I» + F**(l#n) 
but 

F**(1#n) = 

n-l 

n 

L nCr 2n-r F(1 #r) 
r=0 

F**(l#n) = I {nCr 2n-r F(1#r)} + F(l#n) 
r=\) 

the fIrst term is an even number say = E ,Tb.is gives us 

F(1#(n+2» - F(l#(n+1» - F(l#n) = E ,an even number. ---(1.1) 

Case- 1: F (1 #n) is even and F (1 #( n+ 1» is also even => 
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F(1#(n+2» is even. 

Case -II: F(l#n) is even and F(l#(n+ 1» is odd ~ F(l#(n+2» is 

odd. 

again by (1. 1 ) we get 

F(1#(n+3» - F(1#(n+2») - F(l#(n+ 1)) = E, ~ F(l#(n+3» is 

even. F in all y we get 

F(1 #n) is even <:::> F(1 #(n+ 3» is even 

we know that F(l#2) = 2 ~ F(l#2), F(1#5) , F(l#8), ... are 

even 

~ B3n+ 2 is even else Bk is· odd 

This completes the proof. 
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