(Amarnath Murthy ,S.E. (E \&T), Well Logging Services,Oil And Natural Gas Curporation Ltd. ,Sabarmati, Ahunedbad, India- 380005.)

ABSTRCT: In [1] we define SMARANDACHE FACTOR PARTITION FUNCTION, as follows: Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{\mathrm{r}}$ be a set of r natural numbers and $p_{1}, p_{2}, p_{3}, \ldots p_{r}$ be arbitrarily chosen distinct primes then $F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}\right)$ called the Smarandache Factor Partition of $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right.$,$\ldots \alpha_{r}$) is defined as the number of ways in which the number
$N=\quad p_{1}^{\alpha 1} p_{2}^{\alpha} p_{3}^{\alpha 3} \ldots p_{r}^{\alpha r}$ could be expressed as the product of its' divisors. For simplicity, we denote $F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right.$
. $\left.\alpha_{\mathrm{r}}\right)=\mathrm{F}^{\prime}(\mathrm{N})$, where

and p_{r} is the $r^{\text {th }}$ prime. $p_{1}=2, p_{2}=3$ etc.
Also for the case

$$
\alpha_{1}=\alpha_{2}=\alpha_{3}=\ldots=\alpha_{r}=\ldots=\alpha_{n}=1
$$

Let us denote

$$
\begin{aligned}
& \mathrm{F}(1,1,1,1,1 \ldots)=\mathrm{F}(1 \# \mathrm{n}) \\
& \quad \leftarrow \mathrm{n} \text {-ones } \rightarrow
\end{aligned}
$$

In [2] we define The Generalized Smarandache Star
Function as follows:

Smarandache Star Function

(1) $\quad \mathrm{F}^{\prime *}(\mathrm{~N})=\sum_{\mathrm{d} \mathbb{N}} \mathrm{F}^{\prime}\left(\mathbf{d}_{\mathrm{r}}\right) \quad$ where $\mathrm{d}_{\mathrm{r}} \mid \mathbf{N}$
(2) $F^{\prime * *}(N)=\sum_{d_{r} / N} F^{\prime *}\left(d_{r}\right)$
d_{r} ranges over all the divisors of N .
If N is a square free number with n prime factors, let us denote

$$
\mathrm{F}^{* *}(\mathrm{~N})=\mathrm{F}^{* *}(1 \# \mathrm{n})
$$

Smarandache Generalised Star Function

(3) $\quad \mathrm{F}^{, \mathrm{n} *}(\mathrm{~N})=\sum \mathrm{F}^{\mathrm{jn}-1) *}\left(\mathrm{~d}_{\mathrm{r}}\right)$

$$
d_{r} \mathbb{N} \quad n>1
$$

and d_{r} ranges over all the divisors of N .
For simplicity we denote

$$
\begin{gathered}
\mathbf{F}^{\prime}\left(N \mathbf{p}_{1} \mathbf{p}_{2} \ldots \mathbf{p}_{\mathrm{n}}\right)=\mathbf{F}^{\prime}(\mathbf{N} @ 1 \# \mathbf{n}) \text {, where } \\
\left(\mathrm{N}, \mathrm{p}_{\mathrm{i}}\right)=1 \text { for } \mathrm{i}=1 \text { to } \mathrm{n} \text { and each } \mathrm{p}_{\mathrm{i}} \text { is a prime. }
\end{gathered}
$$

$F^{\prime}(N @ 1 \# n)$ is nothing but the Smarandache factor partition of (a number N multiplied by n primes which are coprime to N).
In [2] I had derived a general result on the Smarandache Generalised Star Function. In the present note we define SMARANDACHE STAR TRIANGLE' (SST) and derive some properties of SST.

DISCUSSION:
DEFINITION : 'SMARANDACHE STAR TRLANGLE' (SST)

As established in [2]

$$
\begin{equation*}
a_{(n, m)}=(1 / m!) \quad \sum_{k=1}^{m}(-1)^{m-k} \cdot{ }^{m} C_{k} \cdot k^{n} \tag{1}
\end{equation*}
$$

we have $a_{(n, n)}=a_{(n, 1)}=1$ and $a_{(n, m)}=0$ for $m>n$. Now if one arranges these elements as follows

```
a(1,1)
a(2,1)
a
•
•
a (n,1)
```

we get the following triangle which we call as the 'SMARANDACHE STAR TRIANGLE' in which $\mathrm{a}_{(\mathrm{r}, \mathrm{m})}$ is the $\mathrm{m}^{\text {th }}$ element of the $\mathrm{r}^{\text {th }}$ row and is given by (A) above. It is to be noted here that the elements are the Stirling numbers of the first kind.

1
11
131
$\begin{array}{llll}1 & 7 & 6 & 1\end{array}$
$\begin{array}{lllll}1 & 15 & 25 & 10 & 1\end{array}$

Some propoerties of the SST.

(1) The elements of the first column and the last element of each row is unity.
(2) The elements of the second column are $2^{n-1}-1$, where n is the row number.
(3) Sum of all the elements of the $n^{\text {th }}$ row is the $n^{\text {th }}$ Bell.

PROOF:

From theorem(3.1) of Ref; [2] we have

$$
F^{\prime}(N @ 1 \# n)=F^{\prime}\left(N p_{1} p_{2} \ldots p_{n}\right)=\sum_{m-0}^{n} a_{(n, m)} F^{\prime m_{*}}(N)
$$

if $\mathrm{N}=1$ we get $\mathrm{F}^{, \mathrm{m} *}(1)=\mathrm{F}^{,(\mathrm{m}-1) *}(1)=\mathrm{F}^{,(\mathrm{m}-2) *}(1)=\ldots=\mathrm{F}^{\prime}(1)=1$
hence

$$
F^{\prime}\left(p_{1} p_{2} \ldots p_{n}\right)=\sum_{r=0}^{n} a_{(n, m)}
$$

(4)The elements of a row can be obtained by the following reduction formula

$$
\mathbf{a}_{(\mathrm{n}+1, \mathrm{~m}+1)}=\mathbf{a}_{(\mathrm{n}, \mathrm{~m})}+(\mathrm{m}+1) \cdot \mathbf{a}_{(\mathrm{n}+1, \mathrm{~m}+1)}
$$

instead of having to use the formula (4.5).
(5) If $N=p$ in theorem (3.1) Ref;[2] we get $F^{m_{*}}(p)=m+1$. Hence

$$
F^{\prime}\left(\mathrm{pp}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{n}}\right)=\sum_{\mathrm{m}=1}^{\mathrm{n}} \mathrm{a}_{(\mathrm{n}, \mathrm{~m})} \mathrm{F}^{\prime m_{*}}(\mathrm{~N})
$$

or

$$
B_{n+1}=\sum_{m=1}^{n}(m+1) a_{(n, m)}
$$

(6) Elements of second leading diagonal are triangular numbers in their natural order.
(7) If p is a prime, p divides all the elements of the $p^{\text {th }}$ row except the $I^{\text {st }}$ and the last, which are unity. This has been established in the following theorem.

THEOREM(1.1):

$$
\mathbf{a}_{(p, r)} \equiv 0(\bmod p) \text { if } p \text { is a prime and } 1<r<p
$$

Proof:

$$
a_{(p, r)}=(1 / r!) \quad \sum_{k=1}^{m}(-1)^{r-k} \cdot{ }^{r} C_{k} \cdot k^{p}
$$

Also

$$
\begin{gathered}
a_{(p, r)}=(1 /(r-1)!) \sum_{k=0}^{r-1}(-1)^{r-1-k} \cdot{ }^{r-1} C_{h} \cdot(k+1)^{p-1} \\
a_{(p, r)}=(1 /(r-1)!) \sum_{k=0}^{r-1}\left[(-1)^{r-1-k} \cdot{ }^{r-1} C_{k} \cdot\left\{(k+1)^{p-1}-1\right\}\right]+ \\
(1 /(r-1)!) \sum_{k=0}^{r-1}(-1)^{r-1-k} \cdot{ }^{r-1} C_{k}
\end{gathered}
$$

applying Fermat's little theorem, we get

$$
\begin{aligned}
& \mathrm{a}_{(\mathrm{p}, \mathrm{r})}=\text { a multiple of } \mathrm{p}+0 \\
\Rightarrow \quad & \mathbf{a}_{(\mathrm{p}, \mathrm{r})} \equiv 0(\bmod \mathbf{p})
\end{aligned}
$$

COROLLARY: (1.1)

$$
\begin{aligned}
& F(1 \# p) \equiv 2(\bmod p) \\
& a_{(p, 1)}=a_{(p, p)}=1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}(1 \neq \mathrm{p})=\sum_{k=0}^{p} a_{(p, k)}=\sum_{k=2}^{p-1} a_{(p, k)}+2 \\
& F(1 \# p) \equiv 2(\bmod p)
\end{aligned}
$$

(8) The coefficient of the $r^{\text {th }} \operatorname{term}^{b}{ }_{(a, r)}$ in the expansion of x^{n} as $\mathrm{x}^{\mathrm{n}}={ }_{(\mathrm{a}, 1)}^{\mathrm{b}} \mathrm{x}+{ }_{(\mathrm{n}, 2)}^{\mathrm{b}} \mathrm{x}(\mathrm{x}-1)+{ }_{(\mathrm{n}, 3)}^{\mathrm{b}} \mathrm{x}(\mathrm{x}-1)(\mathrm{x}-2)+\ldots+{ }_{(\mathrm{n}, \mathrm{r})}^{\mathrm{x}} \mathrm{P}_{\mathrm{r}}+\ldots+{ }_{(\mathrm{n}, \mathrm{n})}^{\mathrm{x}} \mathrm{P}_{\mathrm{n}}$.
is equal to $a_{(\mathrm{n}, \mathrm{r})}$.

THEOREM(1.2): $B_{3 n+2}$ is even else B_{k} is odd.

From theorem (2.5) in REF. [1] we have

$$
\begin{aligned}
& \mathrm{F}^{\prime}\left(\mathrm{N} \mathrm{q}_{1} \mathrm{q}_{2}\right)=\mathrm{F}^{\prime} *(\mathrm{~N})+\mathrm{F}^{\prime * *}(\mathrm{~N}) \text { where } \mathrm{q}_{1} \text { and } \mathrm{q}_{2} \text { are prime. } \\
& \text { and }\left(\mathrm{N}, \mathrm{q}_{1}\right)=\left(\mathrm{N}, \mathrm{q}_{2}\right)=1 \\
& \text { let } \mathrm{N}=\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3} \ldots \mathrm{p}_{\mathrm{n}} \text { then one can write }
\end{aligned}
$$

$$
F^{\prime}\left(p_{1} p_{2} p_{3} \ldots p_{n} q_{1} q_{2}\right)=F^{\prime *}\left(p_{1} p_{2} p_{3} \ldots p_{n}\right)+F^{\prime * *}\left(p_{1} p_{2} p_{3} \ldots p_{n}\right)
$$

$$
\text { or } F(1 \#(n+2))=F(1 \#(n+1))+F^{* *}(1 \# n)
$$

but

$$
\begin{gathered}
F^{* *}(1 \# n)=\sum_{r=0}^{n} C_{r}^{n} 2^{n-r} F(1 \# r) \\
F^{* *}(1 \# n)=\sum_{r=0}^{n-1}\left\{C_{r} 2^{n-r} F(1 \# r)\right\}+F(1 \# n)
\end{gathered}
$$

the first term is an even number say $=\mathrm{E}$, This gives us
$F(1 \#(n+2))-F(1 \#(n+1))-F(1 \# n)=E$, an even number.
Case- I: $F(1 \# n)$ is even and $F(1 \#(n+1))$ is also even \Rightarrow
$F(1 \#(n+2))$ is even.
Case -II: $F(1 \# n)$ is even and $F(1 \#(n+1))$ is odd $\Rightarrow F(1 \#(n+2))$ is odd.
again by (1.1) we get
$F(1 \#(n+3))-F(1 \#(n+2))-F(1 \#(n+1))=E, \Rightarrow F(1 \#(n+3))$ is
even. Finally we get
$F(1 \# n)$ is even $\Leftrightarrow F(1 \#(n+3))$ is even
we know that $F(1 \# 2)=2 \Rightarrow F(1 \# 2), F(1 \# 5), F(1 \# 8), \ldots$ are
even
$\Rightarrow B_{3 n+2}$ is even else B_{k} is odd
This completes the proof.

REFERENCES:

[1] "Amarnath Murthy", 'Generalization Of Partition Function, Introducing 'Smarandache Factor Partition', SNJ, Vol. 11, No. 1-2-3, 2000.
[2] "Amarnath Murthy", 'A General Result On The " Smarandache Star Function", SNJ, Vol. 11, No. 1-2-3, 2000.
[3] "The Florentine Smarandache " Special Collection, Archives of Amcrican Mathematics, Centre for Amcrican History, University of Texax at Austin, USA.
[4] 'Smarandache Notion Journal' Vol. 10 , No. 1-2-3, Spring 1999. Number Theory Association of the UNIVERSITY OF CRAIOVA

