PROPERTIES OF SMARANDACHE STAR TRIANGLE

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRCT: In [1] we define SMARANDACHE FACTOR PARTITION FUNCTION, as follows: Let $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_r$ be a set of r natural numbers and $p_1, p_2, p_3, \ldots, p_r$ be arbitrarily chosen distinct primes then $F(\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_r)$ called the Smarandache Factor Partition of $(\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_r)$ is defined as the number of ways in which the number

 $N = p_1 p_2 p_3 \dots p_r \text{ could be expressed as the}$

product of its' divisors. For simplicity, we denote $F(\alpha_1, \alpha_2, \alpha_3, ...$

 $(\alpha_r) = F'(N)$, where $N = p_1 p_2 p_3 \dots p_r \dots p_n$ and p_r is the rth prime. $p_1 = 2, p_2 = 3$ etc.

Also for the case

 $\alpha_1 = \alpha_2 = \alpha_3 = \ldots = \alpha_r = \ldots = \alpha_n = 1$ Let us denote

F(1, 1, 1, 1, 1, ...) = F(1#n) $\leftarrow n - ones \rightarrow$

In [2] we define The Generalized Smarandache Star

•

Function as follows:

Smarandache Star Function

(1)
$$\mathbf{F}'(\mathbf{N}) = \sum_{\mathbf{d}/\mathbf{N}} \mathbf{F}'(\mathbf{d}_r)$$
 where $\mathbf{d}_r | \mathbf{N}$

(2)
$$F'^{**}(N) = \sum_{d_r/N} F'^{*}(d_r)$$

 d_r ranges over all the divisors of N.

If N is a square free number with n prime factors, let us denote

 $F^{**}(N) = F^{**}(1\#n)$

Smarandache Generalised Star Function

(3)
$$F^{n*}(N) = \sum_{d_r/N} F^{(n-1)*}(d_r)$$
 $n > 1$

and d_r ranges over all the divisors of N.

For simplicity we denote

$$F'(Np_1p_2...p_n) = F'(N@1#n)$$
, where

 $(N,p_i) = 1$ for i = 1 to n and each p_i is a prime.

F'(N@1#n) is nothing but the Smarandache factor partition of (a number N multiplied by n primes which are coprime to N).

In [2] I had derived a general result on the Smarandache

Generalised Star Function. In the present note we define SMARANDACHE STAR TRIANGLE' (SST) and derive some properties of SST.

DISCUSSION: DEFINITION : 'SMARANDACHE STAR TRIANGLE' (SST) As established in [2]

$$a_{(n,m)} = (1/m!) \sum_{k=1}^{m} (-1)^{m-k} \cdot {}^{m}C_{k} \cdot k^{n} - \dots$$
 (1)

we have $a_{(n,n)} = a_{(n,1)} = 1$ and $a_{(n,m)} = 0$ for m > n. Now if one arranges these elements as follows

we get the following triangle which we call as the 'SMARANDACHE STAR TRIANGLE' in which $a_{(r,m)}$ is the mth element of the rth row and is given by (A) above. It is to be noted here that the elements are the Stirling numbers of the first kind.

Some propoerties of the SST.

(1) The elements of the first column and the last element of each row is unity.

(2) The elements of the second column are $2^{n-1} - 1$, where n is the row number.

(3) Sum of all the elements of the n^{th} row is the n^{th} Bell.

PROOF:

From theorem(3.1) of Ref; [2] we have

$$F'(N@1#n) = F'(Np_1p_2...p_n) = \sum_{m=0}^{n} a_{(n,m)} F'^{m*}(N)$$

if N = 1 we get $F'^{m*}(1) = F'^{(m-1)*}(1) = F'^{(m-2)*}(1) = \dots = F'(1) = 1$

hence

$$F'(p_1p_2...p_n) = \sum_{r=0}^n a_{(n,m)}$$

(4)The elements of a row can be obtained by the following reduction formula

$$a_{(n+1,m+1)} = a_{(n,m)} + (m+1) \cdot a_{(n+1,m+1)}$$

instead of having to use the formula (4.5).

(5) If N = p in theorem (3.1) Ref; [2] we get $F'^{m*}(p) = m + 1$. Hence

$$F'(pp_1p_2...p_n) = \sum_{m=1}^{n} a_{(n,m)} F^{*m*}(N)$$
$$B_{n+1} = \sum_{m=1}^{n} (m+1) a_{(n,m)}$$

or

(6) Elements of second leading diagonal are triangular numbers in their natural order.

(7) If p is a prime, p divides all the elements of the pth row except the Ist and the last, which are unity. This has been established in the following theorem.

THEOREM(1.1):

 $a_{(p,r)} \equiv 0 \pmod{p}$ if p is a prime and 1 < r < p

Proof:

$$a_{(p,r)} = (1/r!) \qquad \sum_{k=1}^{m} (-1)^{r-k} \cdot C_k \cdot k^p$$

Also

$$a_{(p,r)} = (1/(r-1)!) \sum_{k=0}^{r-1} (-1)^{r-1-k} \sum_{k=0}^{r-1} C_k (k+1)^{p-1}$$

$$a_{(p,r)} = (1/(r-1)!) \sum_{k=0}^{r-1} [(-1)^{r-1-k} C_k (k+1)^{p-1} - 1] + \sum$$

$$(1/(r-1)!) \sum_{k=0}^{r-1} (-1)^{r-1-k} \cdot C_k$$

applying Fermat's little theorem, we get

 $a_{(p,r)} = a$ multiple of p + 0

 $\Rightarrow \qquad \mathbf{a}_{(\mathbf{p},\mathbf{r})} \equiv 0 \pmod{\mathbf{p}}$

COROLLARY: (1.1)

$$F(1\#p) \equiv 2 \pmod{p}$$

$$a_{(p,1)} = a_{(p,p)} = 1$$

$$F(1\#p) = \sum_{k=0}^{p} a_{(p,k)} = \sum_{k=2}^{p-1} a_{(p,k)} + 2$$

$$F(1\#p) \equiv 2 \pmod{p}$$

(8) The coefficient of the r^{th} term ${}^{b}_{(n,r)}$ in the expansion of x^{n} as $x^{n} = {}^{b}_{(n,1)} x + {}^{b}_{(n,2)} x(x-1) + {}^{b}_{(n,3)} x(x-1)(x-2) + ... + {}^{b}_{(n,r)} {}^{x}P_{r} + ... + {}^{b}_{(n,n)} {}^{x}P_{n}$ is equal to $a_{(n,r)}$.

THEOREM(1.2): B_{3n+2} is even else B_k is odd.

From theorem (2.5) in REF. [1] we have

or

$$F'(Nq_1q_2) = F'^*(N) + F'^{**}(N) \text{ where } q_1 \text{ and } q_2 \text{ are prime.}$$

and $(N,q_1) = (N,q_2) = 1$
let $N = p_1p_2p_3...p_n$ then one can write
 $F'(p_1p_2p_3...p_nq_1q_2) = F'^*(p_1p_2p_3...p_n) + F'^{**}(p_1p_2p_3...p_n)$
or $F(1\#(n+2)) = F(1\#(n+1)) + F^{**}(1\#n)$
but

$$F^{**}(1\#n) = \sum_{r=0}^{n} C_r 2^{n-r} F(1\#r)$$

$$F^{**}(1\#n) = \sum_{r=0}^{n-1} \{ {}^{n}C_{r} 2^{n-r} F(1\#r) \} + F(1\#n)$$

the first term is an even number say = E, This gives us

F(1#(n+2)) - F(1#(n+1)) - F(1#n) = E, an even number. ---(1.1)

Case-I: F(1#n) is even and F(1#(n+1)) is also even \Rightarrow

F(1#(n+2)) is even.

Case -II: F(1#n) is even and F(1#(n+1)) is odd $\Rightarrow F(1#(n+2))$ is odd.

again by (1.1) we get

 $F(1\#(n+3)) - F(1\#(n+2)) - F(1\#(n+1)) = E , \implies F(1\#(n+3))$ is

even. Finally we get

F(1#n) is even \Leftrightarrow F(1#(n+3)) is even

we know that $F(1#2) = 2 \implies F(1#2)$, F(1#5), F(1#8),...are

even

 $\Rightarrow B_{3n+2}$ is even else B_k is odd

This completes the proof.

REFERENCES:

- [1] "Amarnath Murthy", 'Generalization Of Partition Function, Introducing 'Smarandache Factor Partition', SNJ, Vol. 11, No. 1-2-3, 2000.
- [2] "Amarnath Murthy", 'A General Result On The" Smarandache Star Function", SNJ, Vol. 11, No. 1-2-3, 2000.
- [3] "The Florentine Smarandache" Special Collection, Archives of American Mathematics, Centre for American History, University of Texax at Austin, USA.
- [4] 'Smarandache Notion Journal' Vol. 10 ,No. 1-2-3, Spring 1999.
 Number Theory Association of the UNIVERSITY OF CRAIOVA .