PROPERTIES OF THE TRIPLETS p^{*}

I. Balacenoiu, V. Seleacu

Univ. of Craiova

For every natural number p we define p^{*} as the following triplet ($p^{*}-1, p^{*}, p^{*}+1$), where $p^{*}=2.3 .5 \ldots p$
Let us consider the following requence of prime numbers :
$2=p_{1}<3 \equiv p_{2}<5=p_{3}<\ldots p_{k}<\ldots$
We call the triplets $\left(p_{k}^{*}-1, p_{k}^{*}, p_{k}^{*}+1\right)$, where $p_{k}^{*}=p_{1} \cdot p_{2} \ldots p_{k}, k=1,2 \ldots$ as p^{*} triplets.
It is casy to observe that :
i) $\quad\left(p_{k}^{*}-1, p_{k}^{*}+1\right)=1$, because $p_{k}^{*}-1, p_{k}^{*}+1$ are both of them are add numbers, and $\left(p_{k}^{*}+1\right)-\left(p_{k}^{*}-1\right)=2$
ii) if $n=s_{1}^{\alpha_{1}} \cdot s_{2}^{\alpha_{2}} \ldots . s_{t}^{\alpha_{t}}$ divides $p_{k}^{*}-1$ or $p_{k}^{*}+1$, because $\left(p_{k}^{*}-1, p_{k}^{*}\right)=1$, this implies $s_{i}>p_{k}$, for every $i \in \overline{1, t}$.
iii) if n divides $\dot{p}_{k}^{*}-1$ or $p_{k}^{*}+1$, then $\left(n, p_{h}\right)=1$, for $h \leq k$

Proposition. The triplets p^{*} are separated.
Proof. Let us consider the consecutive triplets :
$p_{k-1}^{*}-1, p_{k-1}^{*}, p_{k-1}^{*}+1$
$p_{k}^{*}-1, p_{k}^{*} ; p_{k}^{*}+1$
Because $p_{k}^{*}-1-\left(p_{k-1}^{*}+1\right)=p_{k-1}^{*}\left(p_{k}-1\right)-2>0$ it results that every two consecutive triplets are separated, so we have :
$p_{1}^{*}-1<p_{1}^{*}<p_{1}^{*}+1<p_{2}^{*}-1, p_{2}^{*}<p_{2}^{*}+1<\ldots<p_{k}^{*}-1<p_{k}^{*}<p_{k}^{*}+1<\ldots$
Remark. Let us consider the triplets :
$p_{k}^{*}-1, p_{k}^{*}, p_{k}^{*}+1$
$p_{h}^{*}-1, p_{h}^{*}, p_{h}^{*}+1$, where $k<h$, and
$M_{k h}=\left\{n \in N / p_{k}^{*}+1<n<p_{h}^{*}-1\right\}$
Then we have :
a) if $h-k$ is constant, then card M increases simultaneously with k .
b) card $M_{k h}$ increans when $h-k$ increases.

Definition. We say that the triplets p_{k}^{*}, p_{h}^{*}, where $k<h$, are F - prime triplets iff there is no $n \in N, n>1$ so that $n / p_{k}^{*} \pm 1$ and n / p_{h}^{k} or $n / p_{h}^{*} \pm 1$
Examples. The triplets:
$5^{*}-1=29,5^{*}=30,5^{*}+1=31$
$7^{*}-1=209,7^{*}=210,7^{*}+1=211$ are
F - prime triplets.
The triplets
$7^{*}-1=209,7^{*}=210,7^{*}+1=211$
$11^{*}-1=2309,11^{*}=2310,11^{*}+1=2311$
are not F - prime triplets, because $\left(7^{*}-1,11^{*}\right)=11$
Definition. The triplets: $\left(p^{*}-1, p^{*}, p^{*}+1\right)$ and $\left(q^{*}-1, q^{*}, q^{*}+1\right)$ where $p^{*}-1=q$ or $p^{*}+1=q$ are called tinked triplets.
Remark. i) If q and p are two consecutive prime numbers, then we call p^{*} and q^{*} as consecutive linked triplets. For example 3^{*} and 5^{*} are consecutive linked triplets.
ii) Two linked triplets are not F-prime triplets.

Proposition. There is no consecutive linked triplets with $p<q$, for every $p \geq 5$.
Proof. Because p and $\mathrm{q}, \quad p<q$, are two consecutive prime numbers, we have: $p<q<2 p$.
For every $p \geq 5$ we have :
$\left[\frac{p^{*}+1}{q}\right]=\left[\frac{p^{*}}{q}+\frac{1}{q}\right] \geq\left[\frac{p^{*}}{2 p}+\frac{1}{q}\right]=\left[\frac{s^{*}}{2}+\frac{1}{q}\right]=\frac{s^{*}}{2} \geq 3$,
where s is such that $s<p$ and s and p are two consecutive prime number, so we have : $p^{*}+1 \neq q$.
Because $\left[\frac{p^{*}-1}{q}\right] \geq\left[\frac{s^{*}}{2}-\frac{1}{q}\right]=\frac{s^{*}}{2}-1 \geq 2$, then we have $p^{*}-1 \neq q$
Remark i) There are p^{*} triplets such that $p^{*}-1$ and $p^{*}+1$ are friend prime numbers (for example for $p=5$)
There are friend prime numbers which do not belong to a p^{*} triplet. For example the friend prime number 11 and 13 do not belong to any triplet p^{*}, because 12 is not a p^{*}.
ii) The friend prime numbers which belong to a triplet p^{*} are called friend prime numbers with the triplet p^{*}.
There are the pairs of friend prime numbers $(5,7)$ and $(29,31)$ with the triplet p^{*} which correspond to p^{*} linked consecutive triplets.

Unsolved problem

i) There are an infinite set of friend prime numbers which the triplet p^{*}.
ii) There are an infinite set of friend prime numbers which the triplet is not p^{*}.

Proposition. For every $k \in N^{*}$ there is a natural number $h, h>k$ such that for every $s \geq h$, the triplets $\left(p_{k}^{*}-1, p_{k}^{*}, p_{k}^{*}+1\right)$ and $\left(p_{s}^{*}-1, p_{s}^{*}, p_{s}^{*}+1\right)$ are not F - prime.
Proof. If n divides p_{k}^{*} or $\bar{p}_{k}^{*}+1$, then $n=t_{1}^{\alpha_{1}} \ldots t_{i}^{\alpha_{i}}$, where $t_{j}>p_{k}$ for every $j \in \overline{1, i}$.
Let \bar{n} be $\bar{n}=t_{1} . t_{2} \ldots . t_{i}$.
Then \bar{n} divides $\dot{p_{k}}-1$ or $\dot{p_{k}}+1$. If $p_{h}=\max \left\{t_{j}\right\}$, then $h>k, \bar{n}$ divides $\dot{p_{k}^{*}}$ and, of course, \bar{n} divides p_{s}^{*}, for every $s \geq h$. Then the triplets p_{k}^{*}, p_{s}^{*} are not $F-$ prime. Definition. If $n=p_{i_{1}}^{\alpha_{1}} \ldots p_{i_{r}}^{\alpha_{r}}$, then \tilde{n} is denoted by $\tilde{n}=\left\{p_{i_{1}}^{\alpha_{1}}, p_{i_{2}}^{\alpha_{2}}, \ldots p_{i_{r}}^{\alpha_{r}}\right\}$.
Definition. Let us consider $M=\{\tilde{n}\}_{n \in M}$ and let \lesssim be the partial ordering relation on M , defined by
$\left\{p_{i_{1}}^{\alpha_{1}}, \ldots, p_{i_{s}}^{\alpha_{s}}\right\} \subsetneq\left\{q_{j_{1}}^{\beta_{1}}, \ldots, q_{i_{t}}^{\beta_{t_{1}}}\right\} \Leftrightarrow\left\{p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{s}}\right\} \subset\left\{q_{j_{1}}, \ldots, q_{j_{t}}\right\}$ and $p_{i_{k}}=q_{j_{1}}$ implies $\alpha_{k} \leq \beta_{l}$.
Definition. Let us consider $M_{k}=\tilde{p}_{k}^{*} \cup \tilde{p}_{k}^{*}-1 \cup \tilde{p}_{k}^{*}+1, k \in N^{*}$.
Then we define $\hat{p}_{k}^{*}=\left\{n \in N^{*} / \tilde{n} \subset M_{k}\right\}$ and \mathscr{C}, for $h<k$.
Remark. For $n=t_{1}^{r_{1}} \ldots t_{i}^{\gamma_{i}}$, if $n \in \vec{p}_{k}^{*}$, then there are the following cases :
i) n / p_{k}^{*} and
ii) $n / p_{k}^{*}-1$ or $n / p_{k}^{*}+1$

In the first case, $n \in\left\{p_{k}, p_{1} p_{k}, \ldots, p_{k-1} p_{k}, \ldots, p_{k}^{*}\right\}$.
In the second case, becasuse $t_{j}>p_{k}$ for every $j \in \overline{1, i}$ it implies that there is $s \in \overline{1, i}$ for every $h, 1 \leq h \leq k$, such that $t_{s}^{\alpha_{s}} \notin P_{h}^{*}-1$, respectively $t_{s}^{\gamma_{s}} \notin p_{h}^{*}+1$.
In the paper '[1] it is defined the Primorial Smarandache function, denoted by $S P_{r}$, where $S P_{r}: A \subset N^{*} \rightarrow N^{*}$ and $S P_{r}(n)=p$, where p is the smallest prime number such that n divides one of the numbers which belong to the triplet $p^{*}: p^{*}-1, p^{*}, p^{*}+1$, where $p^{*}=2.3 .5 \ldots . p$ (the product of the prime numbers which are $\leq p$)
In the paper [1] it is proved that the free of quadrates numbers belongs to the domain of definition of the function $S P_{r}$. The problem is: There are numbers which are not free of quadrates numbers which belongs to the domain of definition of the function $S P_{r}$?
We study if there is $x^{2} \in N^{*}$, where x is a prime number, such that x^{2} divides one of the numbers of the triplet $p^{*}: p^{*}-1, p^{*}, p^{*}+1$, where p is a prime number.
It is casy to see that $x^{2}+p^{*}$, for every prime number p.
We proof that every prime number $x \in N^{*}$ has the property $x^{2}+p^{*} \pm 1$. If $x<p$, then $x^{2}+p^{*} \pm 1$.
Proposition. $x^{2}+p^{*} \pm 1$
Proof. In the case $x^{2}=p^{*}+1$, then $x^{2}-1=p^{*}$. It is casy to see that $\mathrm{x}=2$ do not verify this property.
Because $x^{2}-1=M 4$ and $p^{*}=M 4+2$, then $x^{2}-1 \neq p^{*}$
If $x=p^{*}-1, x^{2}+1 \neq M 3$ and $p^{*}=M 3$, then $x^{2}+1 \neq p^{*}$
Remark. Every free of quadrates number could be of one of the following kinds : $4 k x^{2},(4 k+1) x^{2},(4 k+2) x^{2}$ or $(4 k+3) x^{2}$, where $k \in N$ and x is a prime number.
Proposition. For every prime number $x, x \in N$, we have :
a) $4 k x^{2} \neq p^{*} \pm 1$
b) $(4 k+2) x^{2} \neq p^{*} \pm 1$
c) $(4 k+1) x^{2} \neq p^{*}+1$
d) $(4 k+3) x^{2} \neq p^{*}-1$

Proof. a) Because $4 k x^{2}$ is an even number and $p^{*} \pm 1$ are odd numbers, then it results that $4 k x^{2} \neq p^{*} \pm 1$
b) In an analogue way $(4 k+2) x^{2} \neq p^{*} \pm 1$, because $(4 k+2) x^{2}$ is an even number.
c) Because $(4 k+1) x^{2}-1=M 4, x>2$ and $p^{*}=M 4+2$ then it results that $(4 k+1) x^{2} \neq p^{*}+1$. For $x=2$ it can be directly proved.
d) Because $(4 k+3) x^{2}+1=M 4$, then it implies $(4 k+3) x^{2} \neq p^{*}-1$. For $x=2$ it is directly proved.
In order to proved the proposed problem it is necessary to study the following cases, too: $\exists x$ and p which are prime numbers, so that :
a) $(4 k+1) x^{2}=p^{*}-1$, where $4 k+1,4 k+3$ are prime number greater than x .
b) $(4 k+3) x^{2}=p^{*}+1$ or products of primes greater than x .

It is easy to see that in the case when $4 k+1$ and $4 k+3$ have a prime factor q smallest than $p(q \leq p)$ the assertions a) and b) are not proved.

References.

1. Charles Ashbacher A Note an the Smarandache Near-To-Primorial Function Smarandache Notions Journal Vol. 7 No -1-2-3 August 1996 p. 56-49.
2. I Balacenoiu The Factorial Sygnature of Natural Numbers.
3. W Sierpinski Elementary Theory of Numbers. Warszawa 1964.
