PROPERTIES OF THE TRIPLETS p^*

I. Balacenoiu, V. Seleacu

Univ. of Craiova

For every natural number p we define p^* as the following triplet (p^*-1, p^*, p^*+1) , where $p^* = 2.3.5...p$

Let us consider the following requence of prime numbers :

 $2 = p_1 < 3 = p_2 < 5 = p_3 < \dots p_k < \dots$

We call the triplets $(p_k^* - 1, p_k^*, p_k^* + 1)$, where $p_k^* = p_1 \cdot p_2 \dots p_k$, k = 1, 2... as p^* triplets.

It is casy to observe that :

i) $(p_k^*-1, p_k^*+1) = 1$, because p_k^*-1, p_k^*+1 are both of them are add numbers, and $(p_k^*+1) - (p_k^*-1) = 2$

ii) if $n = s_1^{\alpha_1} \cdot s_2^{\alpha_2} \cdot \dots \cdot s_t^{\alpha_t}$ divides $p_k^* - 1$ or $p_k^* + 1$, because $(p_k^* - 1, p_k^*) = 1$, this implies $s_i > p_k$, for every $i \in \overline{1, t}$.

iii) if n divides $p_k^* - 1$ or $p_k^* + 1$, then $(n, p_h) = 1$, for $h \le k$ Proposition. The triplets p^* are separated.

Proof. Let us consider the consecutive triplets :

 $p_{k-1}^* - 1, p_{k-1}^*, p_{k-1}^* + 1$

 $p_{k}^{*} - 1, p_{k}^{*}, p_{k}^{*} + 1$

Because $p_k^* - 1 - (p_{k-1}^* + 1) = p_{k-1}^* (p_k - 1) - 2 > 0$ it results that every two consecutive triplets are separated, so we have :

 $p_1^* - 1 < p_1^* < p_1^* + 1 < p_2^* - 1, p_2^* < p_2^* + 1 < ... < p_k^* - 1 < p_k^* < p_k^* + 1 < ...$ Remark. Let us consider the triplets :

 $p_k^* - 1, p_k^*, p_k^* + 1$

$$p_{h}^{*} - 1, p_{h}^{*}, p_{h}^{*} + 1, \text{ where } k < h, \text{ and}$$
$$M_{kh} = \left\{ n \in N / p_{k}^{*} + 1 < n < p_{h}^{*} - 1 \right\}$$

Then we have :

a) if h-k is constant, then card M increases simultaneously with k.

b) card M_{th} increases when h-k increases.

Definition. We say that the triplets p_k^* , p_h^* , where k < h, are F - prime triplets iff there is no $n \in N$, n > 1 so that $n/p_k^* \pm 1$ and n/p_h^* or $n/p_h^* \pm 1$

Examples. The triplets :

 $5^* - 1 = 29, 5^* = 30, 5^* + 1 = 31$

 $7^* - 1 = 209, 7^* = 210, 7^* + 1 = 211$ are

F - prime triplets.

The triplets :

 $7^* - 1 = 209, 7^* = 210, 7^* + 1 = 211$

 $11^{\bullet} - 1 = 2309, 11^{\bullet} = 2310, 11^{\bullet} + 1 = 2311$

are not F - prime triplets, because $(7^* - 1, 11^*) = 11$

Definition. The triplets : (p^*-1, p^*, p^*+1) and (q^*-1, q^*, q^*+1) where $p^*-1=q$ or $p^* + 1 = q$ are called tinked triplets.

Remark. i) If q and p are two consecutive prime numbers, then we call p^* and q^* as consecutive linked triplets. For example 3^{*} and 5^{*} are consecutive linked triplets. ii) Two linked triplets are not F- prime triplets.

Proposition . There is no consecutive linked triplets with p < q, for every $p \ge 5$.

Proof. Because p and q, p < q, are two consecutive prime numbers, we have : p < q < 2p.

For every
$$p \ge 5$$
 we have :

$$\left[\frac{p^{\star}+1}{q}\right] = \left[\frac{p^{\star}}{q} + \frac{1}{q}\right] \ge \left[\frac{p^{\star}}{2p} + \frac{1}{q}\right] = \left[\frac{s^{\star}}{2} + \frac{1}{q}\right] = \frac{s^{\star}}{2} \ge 3,$$

where s is such that s < p and s and p are two consecutive prime number, so we have : $p^*+1\neq q$.

Because
$$\left[\frac{p^{*}-1}{q}\right] \ge \left[\frac{s^{*}}{2}-\frac{1}{q}\right] = \frac{s^{*}}{2}-1 \ge 2$$
, then we have $p^{*}-1 \ne q$

Remark i) There are p^* triplets such that $p^* - 1$ and $p^* + 1$ are friend prime numbers (for example for p = 5)

There are friend prime numbers which do not belong to a p^* triplet. For example the friend prime number 11 and 13 do not belong to any triplet p^* , because 12 is not a p^* .

ii) The friend prime numbers which belong to a triplet p^* are called friend prime numbers with the triplet p^* .

There are the pairs of friend prime numbers (5,7) and (29,31) with the triplet p^* which correspond to p^* linked consecutive triplets.

Unsolved problem

- i) There are an infinite set of friend prime numbers which the triplet p^* .
- ii) There are an infinite set of friend prime numbers which the triplet is not p^* .

Proposition. For every $k \in N^*$ there is a natural number h, h > k such that for every $s \ge h$, the triplets $(p_k^* - 1, p_k^*, p_k^* + 1)$ and $(p_s^* - 1, p_s^*, p_s^* + 1)$ are not F - prime.

Proof. If n divides p_k^* or $p_k^* + 1$, then $n = t_1^{\alpha_1} \dots t_i^{\alpha_i}$, where $t_j > p_k$ for every $j \in \overline{1, i}$.

Let \overline{n} be $\overline{n} = t_1 \cdot t_2 \dots \cdot t_i$. Then \overline{n} divides $p_k^* - 1$ or $p_k^* + 1$. If $p_h = \max\{t_j\}$, then $h > k, \overline{n}$ divides p_k^* and, of course, \overline{n} divides p_s^* , for every $s \ge h$. Then the triplets p_k^*, p_s^* are not F - prime. Definition. If $n = p_{i_1}^{\alpha_1} \dots p_{i_r}^{\alpha_r}$, then \tilde{n} is denoted by $\tilde{n} = \left\{ p_{i_1}^{\alpha_1}, p_{i_2}^{\alpha_2}, \dots, p_{i_r}^{\alpha_r} \right\}$.

Definition. Let us consider $M = \{\tilde{n}\}_{n \in M}$ and let \lesssim be the partial ordering relation on M, defined by

 $\left\{ p_{i_1}^{\alpha_1}, \dots, p_{i_s}^{\alpha_s} \right\} \lesssim \left\{ q_{j_1}^{\beta_1}, \dots, q_{j_t}^{\beta_t} \right\} \Leftrightarrow \left\{ p_{i_1}, p_{i_2}, \dots, p_{i_s} \right\} \subset \left\{ q_{j_1}, \dots, q_{j_t} \right\} \text{ and } p_{i_k} = q_{j_1} \text{ implies}$

Definition. Let us consider $M_k = \tilde{p}_k^* \cup \tilde{p}_k^* - 1 \cup \tilde{p}_k^* + 1, k \in N^*$.

Then we define $\hat{p}_k^* = \{n \in N^* / \tilde{n} \subset M_k\}$ and \mathcal{K} , for h < k.

Remark. For $n = t_1^{\gamma_1} \dots t_i^{\gamma_i}$, if $n \in \tilde{p}_k^*$, then there are the following cases :

- i) n/p_k^* and
- ii) $n/p_k^* 1 \text{ or } n/p_k^* + 1$

In the first case, $n \in \{p_k, p_1 p_k, ..., p_{k-1} p_k, ..., p_k^*\}$.

In the second case, becasuse $t_j > p_k$ for every $j \in \overline{1,i}$ it implies that there is $s \in \overline{1,i}$ for every $h, 1 \le h \le k$, such that $t_s^{\alpha_s} \notin P_h^* - 1$, respectively $t_s^{\gamma_s} \notin p_h^* + 1$.

In the paper [1] it is defined the Primorial Smarandache function, denoted by SP_r , where $SP_r: A \subset N^* \to N^*$ and $SP_r(n) = p$, where p is the smallest prime number such that n divides one of the numbers which belong to the triplet $p^*: p^* - 1, p^*, p^* + 1$, where $p^* = 2.3.5....p$ (the product of the prime numbers which are $\leq p$)

In the paper [1] it is proved that the free of quadrates numbers belongs to the domain of definition of the function SP_r . The problem is : There are numbers which are not free of quadrates numbers which belongs to the domain of definition of the function SP_r ?

We study if there is $x^2 \in N^*$, where x is a prime number, such that x^2 divides one of the numbers of the triplet $p^*: p^* - 1, p^*, p^* + 1$, where p is a prime number.

It is easy to see that $x^2 \neq p^*$, for every prime number p.

We proof that every prime number $x \in N^*$ has the property $x^2 \neq p^* \pm 1$. If x < p, then $x^2 \neq p^* \pm 1$.

Proposition . $x^2 \neq p^* \pm 1$

Proof. In the case $x^2 = p^* + 1$, then $x^2 - 1 = p^*$. It is casy to see that x = 2 do not verify this property.

Because $x^2 - 1 = M4$ and $p^* = M4 + 2$, then $x^2 - 1 \neq p^*$

If $x = p^* - 1$, $x^2 + 1 \neq M3$ and $p^* = M3$, then $x^2 + 1 \neq p^*$

Remark. Every free of quadrates number could be of one of the following kinds : $4kx^2$, $(4k+1)x^2$, $(4k+2)x^2$ or $(4k+3)x^2$, where $k \in N$ and x is a prime number.

Proposition. For every prime number $x, x \in N$, we have :

a)
$$4kx^2 \neq p^* \pm 1$$

b)
$$(4k+2)x^2 \neq p^* \pm 1$$

c)
$$(4k+1)x^2 \neq p^*+1$$

d)
$$(4k+3)x^2 \neq p^*-1$$

Proof. a) Because $4kx^2$ is an even number and $p^* \pm 1$ are odd numbers, then it results that $4kx^2 \neq p^* \pm 1$

b) In an analogue way $(4k+2)x^2 \neq p^* \pm 1$, because $(4k+2)x^2$ is an even number.

c) Because $(4k+1)x^2 - 1 = M4$, x > 2 and $p^* = M4 + 2$ then it results that $(4k+1)x^2 \neq p^* + 1$. For x = 2 it can be directly proved.

d) Because $(4k+3)x^2 + 1 = M4$, then it implies $(4k+3)x^2 \neq p^* - 1$. For x = 2 it is directly proved.

In order to proved the proposed problem it is necessary to study the following cases, too: $\exists x \text{ and } p$ which are prime numbers, so that :

a) $(4k+1)x^2 = p^* - 1$, where 4k+1, 4k+3 are prime number greater than x.

b) $(4k+3)x^2 = p^* + 1$ or products of primes greater than x.

It is easy to see that in the case when 4k+1 and 4k+3 have a prime factor q smallest than $p \ (q \le p)$ the assertions a) and b) are not proved.

References.

1. Charles Ashbacher A Note an the Smarandache Near-To-Primorial Function Smarandache Notions Journal Vol. 7 No -1-2-3 August 1996 p. 56-49.

2. I Balacenoiu The Factorial Sygnature of Natural Numbers.

3. W Sierpinski Elementary Theory of Numbers. Warszawa 1964.