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ON CERTAIN INEQUALITIES INVOLVING THE 
SMARANDACHE FUNCTION 

by 

Sandor Jozsef 

1. The Smarandache function satisfies certain elementary inequalities which have 
importance in the deduction of properties of this (or related) functions. We quote here the 
following relations which have appeared in the Smarandache Function Journal: 

Let p be a prime number. Then 

S ( pX) ::; S ( pY ) 

S(pa) S(pa+l) 

for x ::; y 

-- > .......;::...----<­pa - pa+l for a 2: 0 

where X, y, a are nonnegative integers; 

S ( p') ::; S ( qa ) for p ::; q primes; 

(p-I )a + 1 ::; S ( p' ) ::; pa ; 

If P > ~ and p::; a-I (a 2: 2) , then 

S (p. ) ::; p( a-I) 

For inequalities (3), (4), (5), see [2], and for (1), (2), see [1]. 
We have also the result ([4]): 

. S(n) < 2 
For composIte n ;t 4. -n- - 3 

Clearly, 1::; S(n) for n 2: 1 and 1 < S(n) for n 2: 2 

and S(n)::; n 

which follow easily from tfe definition S(n) = min { kEN- : n dividesk!} 
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2. Inequality (2), written in the fonn S (p.+1 ) ~ pS( p') , gives by successive application 
S( p.+2 ) ~ pS( p.+1 ) ~ p2S( p' ) , ... , that is 

S( pO+c ) ~ pc .S( p' ) (9) 

where a and c are natural numbers (For c = 0 there is equality, and for a = 0 this follows 
by (8». 

Relation (9) suggest the following result: 

Theorem 1. 

For all positive integers m and n holds true the inequality 

S(mn) ~ m·S(n) 

Proof. 

For a general proof, suppose that m and n have a canonical factorization 

a I a, bib, C I c, d I do 
m=PI ... Pr ·ql··.qs ,n=PI···Pr ·tl···tlc 

(10) 

where Pi (i = If), Cli (j = IS), tp (P = Ii() are distinct primes and ai ~ 0, c
J 
~ 0, b

J 
~ 1, 

dp ~ 1 are integers. 
By a well known result of Smarandache (see [3]) we can write 

S( ) { &I+CI) (p&r+c, b l b. dl S( do)} m· n = max S(PI ' ... , S r ), S(ql ), ... , S(qs ), S(tl ), ... , tic 

~ max{p~1 S(P~I), ... , p:'S(p~'), S(q~I), ... , S(q~'), '" , S(t~t)} 

by (9). Now, a simple remark and inequality (8) easily give 

S( ) &1 &, b l b, {S CI) C, ( dl S dt)} S m·n ~PI ... pr ql ... qs ·max (PI , ... ,S(pr ),S tl ), ... , (tic =m (n) 

proving relation (10). 

Remark. 

For (m,n)=l, inequality (10) appears as 

max { S(m), S(n)}~ mS(n) 

This can be proved more generally, for all m and n 

Theorem 2. 
For all m, n we have: 

max{S(m), S(n)} ~ mS(n) (11) 

Proof. 

The proof is very simple. Indeed, if S(m) ~ S(n) , then S(m) 5 mS(n) holds, since S(n) 
~ 1 and S(m) ~ m , see (7), (8). For S(m) ~ S(n) we have S(n) ~ mS(n) which is t me by m ~ 
1. In all cases, relation (11) follows. 

This proof has an independent interest. As we shall see, Theorem 2 will follow also 
from Theorem 1 and the following result: 
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Theorem 3. 

For all m, n we have 

S(mn) 2! max {S(m), S(n)} (12) 

Proof. 

Inequality (1) implies that SCpo ) $; S(pO+C ), S(pC ) $; S(pO+C ), so by using the 
representations of m and n, as in the proof of Theorem 1, by Smarandache's theorem and the 
above inequalities we get relation (12). 

We note that, equality holds in (12) only when all a, =0 or all cj =0 (i = If) , i.e. when 
m and n are coprime. 

3. As an application of (10), we get: 

Corollary 1. 

Proof. 

) Sea) S(b) ·f b I a-a-$;-b-,l a 

b) If a has a composite divisor b -:t:- 4 , then 

Sea) S(b) 2 
-<--<­a - b - 3 

(13) 

(14) 

Let a = b . k . Then S~~k) $; S~b) is equivalent with S(kb) ~ kS(b) , which is relation 

(10) for m=k, n=b. 
Relation (14) is a consequence of (13) and (6). We note that (14) offers an 

improvement of inequality (6). 
We now prove: 

Corollary 2. 

Let m, n, r, s be positive integers. Then: 

S(mn) + S(rs) 2! max { S(m) + S(r), S(n) + S(s) } (15) 

Proof. 

We apply the known relation: 

max { a + c , b + d } $; max { a, b } + max { c, d } (16) 

By Theorem 3 we can write S(mn) 2! max {SCm), Sen)} and S(rs) 2! max {S(r), S(s)}, 
so by consideration of(16) with 

a == SCm), b == S(r), c == S(n), d == S(s) 

we get the desired result. 

Remark. 
Since (16) can be generalized to n numbers (n 2! 2), and also Theorem 1-3 do hard for 

the general case (which follow by induction; however these results are based essentially on 
(10) - (15), we can obtain extensions of these theorems to n numbers. 
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Corollary 3. 
Let a, b composite numbers, a ~ 4, b ~ 4 . Then 

SCab) < Sea) + S(b) < ~ . 
ab - a+b -3' 

and 
S2 (ab) ~ ab[S2(a) + S2(b)] 

where S2(a) = (S(a»2, etc. 

Proof. 

By (10) we have Sea) ~ S~b) , S(b) ~ S(:b) ,so by addition 

Sea) + S(b) ~ S(ab)(~ + ~), giving the first part of(16). 

For the second, we have by (6): 

Sea) ~ ~ a , S(b) ~ ~ b , so Sea) + S(b) ~ ~(a + b), yielding the second 

part of (16). 
For the proof of (17), remark that by 2(n2+ r) ~ (n + ri, the first past of(16), as 

well as the inequality 2ab ~ (a + b)2 we can write successively: 

S2(ab) ~ a
2
b

2 
. [Sea) + S(b)]2 ~ 2a

2
b

2 
. [S2(a) + S2(b)] ~ ab[S2(a) + S2(b)] 

(a+b)2 (a+b)2 
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Notations : 

ON SOAIE COl'vl'ERGENT SERIES 
by EmiL Burton 

N* set of integers 1 ,2 ,3 , ... 
d(ll) the number of divisOI's of Il , 

S(n) th{' SmarandachF function S: ."1* ~ N' . 
S(n) is the smallest integer m with the property that m! is divisible by n 
R set of real numbers. 

00 

In this article we consider the series ~ f (S (k» . 
t= J 

f: N' ~ R is a function which satisfies any conditions. 
Proposition 1. Let f: S ~ R be a function which satisfies condition: 

f(t) ::; tlL ( dI t!)-~ (1-1 )!)) 

for e,"ery t E N"Il, a > 1 constant, c > 0 constant' 
00 

Then the series ~ f (S(k» is convergent. 

Proof- Let us denote by lilt the number of elements of the set 
"'1

1
= { k E N* : S(k) = t } = { k E N* : kit! and k t (t - 1 ) ! I. 

It follows that ntt = d( t ! ) - d( ( t - 1 ) ! ) . 
00 00 

L f (S(k) = 2: !fir Jrt) 

\Ve have m,' f(t) $ ntt • P:
t 

= l~ • 

00 

It is well ': known that ~ ~ is con\'ergent if a > 1. 
t 

00 

Therefore ~f(S(k» < co . 
k.=J 

It is known that d(n) < 2;n if n E N* 
and it is obvious that m, < d( t ! ) 
We can show that 
00 

~ ( S(ky ./S(k)! )"1 <: 00 • p:> 1 

~ ( S(k) ! r 1 < eX; 

k.-J 
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~ ( SO) ! S(2) ! ... S(k) ! ) -lIJ;< 00 

co 

r L ~ 
\VJ 

I; ( S(k) JS(k)! (log S(k)!, ) -! < w , p:> 1 ( 7) 

Write f(S(k» ;5 (S(k)'· JS(k)! )" 1, f(t);5 (t' . .[i! t 1;5 2(t"· Ii!)" 1 < 
< 2(t'·d(t!»" 1 < 2(t'.(d(t!) - d«t-l)!») " 1 

• 

Now use the proposition 1 to get (4) . 
The convergence of ( 5 ) follows from inequality t /iT <: t ! if p-= R . P > 1. 
1;0. I. ; (~PJ) , I E N*. Here (~PJ) means the greatest integer ::; ~PJ . 
The detaiL~ are left to the reader. To show (6) we can use the Carleman's 
Inequality :Let (X)"eN* be a sequence of positive real numbers and x .. :;t.O 
for some n. Then 

L (xrXz" " . x,) 1~ < e L xl: ( 8 ) 
1:=1 1:=1 

Write xI.: = (S(k) ! r 1 and use (8) and (5) to get (6). 
It is well-known that 

.-: 
Write /(1) = (11iT (log/y}-I, t 22, I ~ N*. We have 

I; (S(k)jS(k) ! (logS(k)Y)-l = ~ m,l(t). 
k-1 ~=1 

m,/(t) < d(1 !) /(1) < 2 /iT (I .[iT (log lyr 1 = 2 (I (log tyr 1 
• 

Now use ( 9 ) to get ( 7 ) . 
Remark 1. Apply (5) and Cauchy's Condensation Te..~t to see that 

~ ]k (S(]k) ! yl < 00. This implies that lim]k (S( ]k ) ! ) -I = O. 
1:=' k-+c.c 
A problem :Test the convergence behaviour of the series 

r.(S(kY j(S(k) - 1) ! )-1. (10) 
aEI 

Remark 2. This problem is more powerful than ( 4 ) . 
Let p. denote the n-th prime nwnber (pt=2, p:z=3, p,=5, p .. =7 ,.0.) 0 

It is known that 1: lip. = 00 • (11) 

\Ve next make use of (11) to obtain the following result : 
.00 

~ S(n)/n2 = QQ. (12) 
.. -I 
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"" (Xl c:J:) co 
We have L S(n)/n2 ~ L S(pJ/PIo.2 = L p/~2 = L lIPk (13) 

.~J ~zI ~=1 ~=I 

Now apply (13) and (11) to get (12). 
\Ve can also show that 

a:;l 

2: S(n)/n I""? < 00 if p > 1 , pER. 
.. -! 

oX; 00 00 

Indeed, ~ S(n)/n1+1' ::; ~ nlnl+? = L lInP < 00 • 

a-I a-I a-I 

If 0 ::; p ::; 2. we ha,,-e S(n)/nP 2= S(n)/n2 . 
00 

Therefore ~ S(n)/nP = 00 if 0 ::;; P ::;; 2 . 
a-I 
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ON SO~IE DIOPHA1~TINE EQUATIONS 
hy 

Lucian Tulescu and Emil Burton 

Let S(n) be dermed as the smallest integer such that (S(n))! is 
divisible by n (Smarandache Function). \Ve shall assume that S: ~*~N*, 

S(I) = 1. Our purpose is to study a variety of Diophantine equations 
unrolving the Smarandache function. \Ve shall determine all solutions of the 
equations (1) , (3) and (8) . 
(1) xSix) = S(x}' 
(2) xS(Y) = S(YY 
(3) XS(XI + S(x) = S(x}'+ x 
(4) xS(Y) + S(y) = S(v}, + x 

(5) S(xY + x2 = XS(X) + S(X)2 
(6) S(yy + x2 = XS(y) + S(y)2 
(7) S(x)X + Xl = XS(x)+ S(X)l 

(8) S(yy + Xl = x5{J) + S(y)l . 
For example, let us solve eqWltion (1) ; 

\Ve observe that if x = S(x) , then (1) holds. 
But x = S(x) if and only if x E { 1.2.3.4.5, i, . . }={XE N-; x -prime }u{1. 4}. 
If x 2:: 6 is not a prime integer, then S(x)<x. We can write x =8(x) + t, tE N*, 
which implies that S(x)S(x)+t =(S(x) + t)S(][). Thus we have S(xY = (1 + ~ )S(x). 

~V) 

Applying the well '" known re~JUlt (1 + * t < 3k
; for n; k.;; N* ,we have 

S(x)t < 3t whJ<:h implie~ that S(x) < 3 and con~quently x < 3. Th18 
contradicts our choice of x. 
Thus, the solutions of (1) are At = { x e N* ; x = prime} U { 1 ,4 }. 

Let U8 denote hy t\. the 8et of all 8()lution~ of the equation (k). 
To fmd ~ for example, we see that (S(n), n) E ~ for n E Nit . 
Now suppose that x ~ S(y). \Ve can show that (x, y) does not belongs 
to AI a~ follow~ : 1 < S(Y) < x ::=> S(Y) ~ 2 and x ~ 3. On the other han~ 
S(y)" - xS(Y) > S(y)" - x" = (S(y) - x)(S(y)"-l + XS(y),,-2 + ... + x"-I) 2: 

(S(y) _ X)(S(y)2 + xS(y) + x2 ) = S(y)3 _ x3 • 

ThU8 , A--. = { (x , y) ; y = n , x = S(n) , n E N * } • 
To fmd.~, we se that x == 1 implies S(x) == 1 and (3) holds. 
If S(x) = x, (3) also holds. 
If x ;;;: 6 i8 not a prime mJJnher ,then x > S(x) . 
Write x = S(x) + t , t E Nit = { 1 ,2 , 3 , ..... } . 
Combining this with (3) yields 

S(x)S(i:)+t+S(x)+t =(S(x) + OS(x)+S(x) ¢:!>S(x)t + tlS(x)S(i:)= (l+tlS(x»S(i:) < 3t 

which implies S(x) < 3. This contradicts our choice of x . 
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Thus A~ = { X E N * ; x = prime } U { 1 ,4 } . 
Now, we suppose that the reader is able to rmd Az, A. , ... , .1\, . 
We next determine aU positive integers x such that x = L k2 

\Vrite I Z + 22 + ... + S2 = X r 1 ) 

S2<X r .... ' 
t~} 

(s+1)2~x (3) 
( 1) implies x = s(s+ 1)(2s+ 1)/6. Combining this with (2) and (3) we have 
6s2 < s(s+I)(25+1) and 6(s+I)2 ~ s(s+I)(25+1). This implies that s E {2, 3 }. 
s = 2 =:> x = 5 and s = 3 =:> x = 14 . 
Thus x E {5. 1"' } . 
In a similar way we can solve the equation x = L kl 

~<x 

We rmd x € {9, 36 , 100 } . 
We next show that the set lVI, = {n E ~* ; n = ~ k' ,p ~ 2 } has at le~~t 

k'cn 

[ p/ln2l - 2 elements. 
ut mEN" such that m -1 < p/in2 
and p/1n2 <m 
Write ( ") and (5) as : 
2 < eP'_l 
ell. < 2 
Write xk = ( 1 + 11k f, Yk = ( 1 + 11k )k+l • 

It is known that x. < e < Yt for every s, tEN" . 
Combining thi~ with (6) and (7) we have 
X"I_<eP 1ra <2<e"_1<yt--1 for every s,tE N*. 

I~\ , _. , 

r r, 
t U } 
1"1\ , . , 

\Ve have 2 < yt-1 = «t+l)/tt+1),I_l ::; «t+ 1)/t)' if (t+ 1)/(m-l)::; 1 . 
So, if t ~ m - 2 we have 2 < «t+l)/t)' ¢:> 2 t' < (t+l)' ¢:> (t+l)' - t'> t' (8). 
Let A,(s) denote the sum l' + 2' + ..... + s' . 
Proposition 1. (t+l)' > A.(t) for every t::; m-2, tEN". 
Proof. Suppose that A,(t) ~ (t+l)' ¢:> A,(t-l) > (t+l)' - l' > t' ¢:> 

A,(t-2) > l' - (t-l)' > (t-l)' ¢;> ••• ¢;> A.(1) > 2' which is not true. 
It is obvious that A.(t) > l' if tEN", 2::; t ::; m-2 which implies A,(t)E M:. 
for every t e N* and 2 ~ t ~ m-2. - -
Therefore card M, > m-3 = (m-l) - 2 = [ plln2 1 - 2 . 
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ABOUT THE SMARANDACHE COMPLEMENTARY PRIME FUNCTION 

by 

Marcela POPESCU and Vasile SELEACU 

Let c. N ~ N be the function defined by the condition that n + c ( n ) = Pi ' where 

Pi is the smallest prime number, Pi 2: n. 

Example 

c(O)=2, c(I)=I, c(2)=O, c(3)=O, c(4)=I, c(5)=O, c(6)=I, 

c ( 7 ) = ° and so on. 

1 ) If Pl and Pl-l are two consecutive primes and P1 < n ~ Pl-l' then 

c ( n ) E { PH - P1 - 1, P1-l - P. - 2, . . . , 1, ° :, because • 

c ( Pi - 1 ) = PH - Pl - 1 and so on, c ( PH ) = ° 
2 ) c ( P ) = c ( P - 1 ) -1 = ° for every P prime, because c ( P ) = ° and c ( P - 1 ) = I. 

We also can observe that c ( n ) -:;:. c ( n + 1 ) for everv n E N 

1. Property 

The equation c ( n ) = n, n > 1 has no solutions. 

Proof 

Ifn is a prime it results c ( n ) = ° < n. 

It is wellknown that between n and 2n, n> 1 there exists at least a prime number. Let 

Pl be the smallest prime of them. Then if n is a composite number we have • 

c ( n ) = P. - n < 2n - n = n, therefore c ( n ) < n. 
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I c(n) 
It results that for every n ~ p. where p is a pnme. we have n::; -n- < 1. 

"c(n) _ ~ c(n) 
therefore .t... -- dlver~es Because for the primes c ( p ) ! P = 0 we can say that 1--

n=r n - ,;;j n 
~ pr.rr...: 

diverges 

2. Property 

If n is a composite number. then c ( n ) = c ( n - I ) - I. 

Proof 

Obviously. 

. c(n) 
It results that for nand ( n - I ) composIte numbers we have c(n _ 1) > I . ~ow. if 

Pl < n < Pl-I where Pl and P._I are consecutive primes. then we have. 

c ( n ) c ( n - 1 ) . . . c ( PH - I ) = ( PH - n )! 

and if n ::; Pl < PH then c ( n ) c ( n ~ 1 ) . . . c ( PH - 1 ) = o. 

Of course. every tI c(n) = 0 if there exists a prime number P, k::; P ::; r. 
n=\" 

If n = P. is any prime number. then c ( n ) = 0 and because c ( n";" 1 ) = P H - n - I it 

results that c ( n ) - c ( n ~ 1 ) I = 1 if and only if n and ( n + 2 ) are primes ( friend prime 

numbers) 

3. Property 

F or every k - th prime number Pl we have • 

Proof 

Because c ( Pl - 1 ) = P._I - P. - 1 we have P._I - P. = c ( P. - 1 ) T 1. 

But. on the other hand we have PH - P. < ( log P. )2. then the assertion follows. 

4. Property 

c ( c ( n ) ) < c ( n ) and cm 
( n ) < c ( n ) < n. for every n > 1 and m ~ 2 . 

Proof 

If we denote c ( n ) = r then we have. 

c ( c ( n ) ) = c ( r ) < r = c (n ). 

Then we suppose that the assertion is true for m : cm 
( n ) < c ( n ) < n, and we prove it 
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for ( In - I ). too 

COl' I ( n ) = c ( Cm 
( n ) ) < COl ( n ) < c ( n ) < n 

5. Property 

F or every prime p we have ( c ( p - I »)" ~ c ( ( p - I n 
Proof 

c ( p - I ) = I :::::> (c ( p - I »n = I while ( p - I r IS a composite number. therefore 

c«p-I)")21. 

6. Property 

The following kind of Fibonacci equation: 

c(n)-c(n-l)=c(n-2) ( 1 ) 

has solutions. 

Proof 

Ifn and ( n ~ 1 ) are both composite numbers, then c (n) > c (n ~ 1 )2 1. If( n ~ 2 ) 

is a prime. then c ( n - 2 ) = 0 and we have no solutions in this case. If ( n ~ 2 ) is also a 

composite number. then: 

c ( n ) > C ( n - 1 ) > C ( n - 2 ) 2 1, therefore c ( n ) -f- C ( n T 1 ) > c ( n ~ 2 ) 

and we have no solutions also in this case 

Therefore nand ( n - 1 ) are not both composite numbers in the equality ( 1 ). 

If n is a prime, then ( n - 1 ) is a composite number and we must have: 

o - c ( n - 1 ) = c ( n - 2 ), wich is not possible ( see ( 2 ) ). 

We have only the case when ( n - I ) is a prime~ in this case we must have: 

I - 0 = c ( n - 2 ) but this implies that ( n .... 3 ) is a prime number, so the only 

solutions are when ( n -+- 1 ) and ( n - 2 ) are friend prime numbers. 

7. Property 

The following equation: 

c(n) -i- c(n ..... 2) 
= c(n - 1) ( 2 ) 

2 

has an infinite number of solutions. 
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Proof 

Let Pl and Pl-! be two consecutive prime numbers. but not friend prime numbers. 

Then. for every integer i between Pl -\ and Pl ! - \ we have: 

c(i - \) - c(i - \) (PhI - i ..,.. \)...;... (PhI - i-I) 
= = c(i) 

So. for the equation (:!) all positive integer n between Pl"'" \ and Pl-! - 1 is a 

solution 

If · . h . b c(n; ::n -- c ( n - 1 ). n IS pnme. t e equation ecomes 

But ( n ...;... 1 ) is a composite number. therefore c ( n ...;... 1 ) :t; 0 ~ c ( n ..,.. 2 ) must be 

composite number. Because in this case c ( n ..... 1 ) = c ( n ..... 2 ) ..... 1 and the equation has the 

form 
c(n -'-"') 

2 - = c ( n + 2 ) T 1, so we have no solutions. 

If ( 1)· . h h c(n) Tc(n-'-2) nTIS pnme, t en we must ave 2 = 0, where nand ( n + 2 ) 

are composite numbers. So we have no solutions in this case, because c ( n ) ~ 1 and 

c(n""'2)~1. 

If ( n ...;... 2 ) is a prime, the equation has the form Cin) = c ( n + 1 ), where ( n"'" 1 ) is 

a composite number, therefore c ( n ..... 1) :;t: 0 . From (2) it rezults that c ( n) :t; 0, so 

n is also a composite number. This case is the same with the first considered case. 

Therefore the only solutions are for Pk, Pk+l - 2 , where Pl' Pl-! are consecutive 

primes. but not friend consecutive primes. 

8. Property 

The greatest common divisor of nand c ( x ) is 1 : 

( x. c ( x ) ) = 1, for every composite number x. 

Proof 

Taking into account of the definition of the function c, we have x + c ( x ) = p, where P 

is a prime number. 

If there exists d :t; 1 so that d / x and d / c( x ), then it implies that d / p. But P is a 

prime number, therefore d = p. 

This is not possibile because c ( x ) < p. 

Ifp is a prime number, then ( P, c ( P ) ) = ( p , 0 ) = p. 
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9. Property 

The equation [ x. y ] = [ c ( x ). c ( y ) ]. where [ x. y ] is the least common multiple of 

x and y has no solutions for x. y > I. 

Proof 

Let us suppose that x = dk 1 and y = dk~ . where d = ( x. y ). Then we must have· 

[ x. y ] = dk 1 kc = [ c ( x ). c ( y ) 1 

But (x. c ( x ) ) = ( dk 1 • C ( x ) ) = I. therefore dk1 is gIven In the least common 

multiple [c ( x ). c ( y )] by c ( y ) 

But (Y. c ( y ) ) = ( dk 1 • C ( Y ) ) = I => d = 1 => ( x, y ) = I => 

=> [x. y ] = xy > c ( x ) c ( y ) ~ [ c ( x ), c ( y )], therefore the above equation has no 

solutions. for x. y > I. 

F or x = I = Y we have [ x, y ] = [ c ( x ), c ( y ) ] = I. 

10. Property 

The equation. 

( x, y ) = ( c ( x ), c ( y ) ) 

has an infinite number of solutions. 

Proof 

( 3 ) 

If x = I and y = p - 1 then ( x, y ) = 1 and ( c ( x ), c ( y ) ) = ( I, 1 ) = I, for an 

arbitrary prime p 

Easily we observe that every pair ( n. n - I ) of numbers is a solutions for the equation 

( 3 ), ifn is not a prime 

11. Property 

The equation. 

c(x)-x=c(y)-I-y 

has an infinite number of solutions. 

Proof 

( 4 ) 

From the definition ofthe function c it results that for every x and y satisfying 
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Pl < X::; Y ::; Pl· I we have c ( x ) - x = c ( y ) + Y = Pl· I . Therefore we have ( Pl-I - Pl )2 

couples ( x. y ) as different solutions. Then. until the n-th prime Po ' we have 2: ( PH - Pl )2 
1..=1 

different solutions 

Remark 

It seems that the equation c ( x ) + y = c ( y ) ~ x has no solutions x ~ y, but it is not 

true. 

Indeed. let Pk and Pl-I be consecutive primes such that PH - Pl = 6 ( is possibile : for 

example 29 - 23 = 6,37 - 31 = 6. 53 - 47 = 6 and so on ) and Pk - 2 is not a prime. 

Then c ( Pl - 2 ) = 2. c ( Pl - 1 ) = I. c ( Pl ) = ° , c ( Pl + 1 ) = 5, c ( Pl ..... 2 ) = 4, 

c ( Pl + 3 ) = 3 and we have : 

1. c ( Pk + 1 ) - c ( Pl - 2 ) = 5 - 2 = 3 = ( Pl + 1 ) - (Pl - 2 ) 

2. c ( Pk ..;.. 2 ) - c ( Pl - 1 ) = 3 = ( Pl + 2 ) - ( Pl - 1 ) 

3. c ( Pl + 3 ) - c ( Pl ) = 3 = ( Pl + 3 ) - Pl' thus 

c ( x ) - c ( y ) = x - y ( c:> c ( x ) + Y = c ( y ) + x ) has the above solutions if PL - Pl.1 > 3 

If Pl - Pk.1 = 2 we have only the two last solutions. 

In the general case, when PH - Pl = 2h, h E N*, let x = PI; - u and y = Pl + v, u,v E N 

be the solutions of the above equation 

Then c ( x ) = c ( Pl - U ) = u and c ( y ) = c ( Pl + V ) = 2h - v. 

The equation becomes: 

u ~ ( Pl + V ) = ( 2h - v ) + ( Pl - U ). thus u + v = h. 

Therefore. the solutions are x = Pk - u and y = Pl + h - u, for every u = 0, h if 

Pl - PH >h and x = PI; - U, Y = Pl + h - u, for every u = 0, I if p" - Pl.1 = 1+ 1 s h. 

Remark 

c ( Pk + 1 ) is an odd number, because if Pk and Pl-1 are consecutive primes, Pl > 2, then 

Pk and PH are. of course, odd numbers; then PH - Pl - 1 = c ( Pl + 1 ) are always odd. 

12. Property 
dd· 

The sumatory function of c, F < ( n ) = L c ( d) has the properties : 
de~ 
din 

17 



a) F. ( 2p ) = I T C ( 2p ) 

b ) F, ( pq ) = I T C ( pq ). where p and q are prime numbers. 

Proof 

a ) F. ( 2p ) = c ( I ) + c ( 2 ) + c ( p ) T C ( 1p ) = I + c ( 1p ). 

b ) F. ( pq ) = c ( 1 ) + c ( p ) + c ( q ) T C ( pq ) = 1 T C ( pq ). 

Remark 

The function C is not multiplicative: 0 = c ( 1 ) . c ( p ) < C ( 2p ). 

13. Property 

o for k odd number 

2 for k even number, k 2: 1 

Proof 

We have: 

c l 
( P ) = 0; 

c2 
( p ) = c ( c ( p ) ) = c ( 0 ) = 1; 

c3 
( P ) = c (2 ) = 0: 

c4 
( p ) = c ( 0 ) = 1. 

Using the complete mathematical induction, the property holds. 

Consequences 

cl.:(p) 
1 ) We have 

+ cl.:+l(p) 
.., = 1 for every k 2: 1 and p prime number. 

= r -2r l. 2, where [x] is the integer part of x, and 
L J 

= I ~ l ~, thus L 
_-_ - 1<.21 

Remark 

cl.:(p) and L 
~ 

k e\"en 

1 are divergent series. 
cl.:(p) 

cL
( P _ 1 ) = C

L
•
I 

( c ( p - 1 » = C
L
•
I 

( 1 ) = 1, for every prime p > 3 and k E N*, 

therefore ckl 
( PI - 1 ) = c

k
: ( P2 - 1 ) for every primes PI , P2 > 3 and k) , k2 E N*. 

14.Property 

The equation: 

c(x)+c(y)+c(z)=c(x)c(y)c(z) ( 5 ) 
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has an infinite number of solutions 

Proof 

The only non-negative solutions for the diofantine equation a .,.. b - c = abc are a = 1. 

b = 1 and c = 3 and all circular permutations of: I. 1. 3 :. 

Then· 

c ( x ) = 1 ~ x = Pl - I. Pl prime number. PL > 3 

c ( Y ) = 1 ~ Y = Pl -1, where Pr-1 and Pr are consecutive prime numbers such 

that Pr - Pr-1 ~ 3 

c ( z ) = 3 ~ Z = PI - 3. where PI-1 and PI are consecutive prime numbers such that 

PI - PI-1 ~ 4 

and all circular permutations of the above values of x. y and z. 

Of course. the equation c ( x ) = c ( y ) has an infinite number of solutions. 

Remark 

We can consider c'" ( y ), for every y E N*, defined as c'" ( y ) = { X E N i c ( x ) = y I. 

For example c'" ( 0 ) is the set of all primes, and c'" ( 1 ) is the set ( 1, Pl-1 } Il prime and so on. 

Pk > 3 

A study of these sets may be interesting. 

Remark 

If we have the equation: 

cL 
( X ) = c ( y ), k ~ 1 ( 6 ) 

then. using property 13, we have two cases. 

If x is prime and k is odd, then cl 
( x ) = 0 and ( 5 ) implies that y is prime. 

In the case when x is prime and k is even it results cL 
( x ) = 1 = c ( y ), which implies 

that y is a prime. such that y - 2 is not prime. 

Ifx = p, Y = q, P and q primes, p,q > 3, then ( p - 1, q - 1 ) are also solutions, because 

cL 
( p - 1 ) = 1 = c ( q - 1 ), so the above equation has an infinite number of couples as 

solutions 

Also a study of ( ck 
( X ) ) ... seems to be interesting. 
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Remark 

The equation· 

c(n)"'c(n-I )-c(n-2)=c(n-l) ( 7 ) 

has solutions when c ( n - I ) = 3. c ( n ) = 2. c ( n -i- I ) = I. c ( n ~ 2 ) = O. so the solutions 

are n = p - 2 for every p prime number such that between p - 4 and p there is not another 

pnme. 

The equation. 

c ( n - 2 ) - c ( n - I ) - c ( n - I ) - c ( n - 2 ) = 4c ( n ) ( 8 ) 

has as solutions n = p - 3. where p is a prime such that between p - 6 and p there is not another 

prime. because 4c ( n ) = 12 and c ( n - 2 ) ~ c ( n - I ) ~ c ( n T I ) ... c ( n -i- 2 ) = 12. 

For example n = 29 - 3 = 26 is a solution of the equation ( 7 ). 

The equation. 

c(n)"'c(n-I)-c(n-2)~c(n-3)+c(n-4)=2c(n-5) (9) 

( see property 7) has as solution n = p - 5, where p is a prime, such that between p - 6 and p 

there is not another prime. Indeed we have 0 T 1 -i- 2 -i- 3 -i- 4 = 2· 5. 

Thus. using the properties of the function c we can decide if an equation, which has a 

similar form with the above equations. has or has not solutions. 

But a difficult problem is • " For any even number a. can we find consecutive primes 

such that P._I - P. = a? " 

The answer is useful to find the solutions of the above kind of equations, but is also 

important to give the answer in order to solve another open problem. 

" Can we get. as large as we want. but finite decreasing sequence k, k - 1, ... ,2, 1,0 

( odd k ). included in the sequence of the values of c'>" 

If someone gives an answer to this problem, then it is easy to give the answer ( it will 

be the same) at the similar following problem: 

" Can we get, as large as we want, but finite decreasing sequence k, k - 1, ... , 2, 1, 0 

( even k), included in the sequence of the values of c?" 
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\Ve suppose the answer is negative. 

In the same order of ideea. it is interesting to tind max 
n 

c(n) 
n 

It is well known ( see [4]. page 147) that Pn'l - Pn < ( In Pn )2. where Pn and Pnl are 

two consecutive primes. 

c(n) 
Moreover. -n-' Pl < n ::; Pl-l reaches its maxImum value for n = Pl - I. where 

Pl IS a pnme. 

c(n) 
n 

So. in this case: 

= 
P 1-. ... 1 - PI-. - 1 

PI-. -I 
< o 

Using this result. we can find the maximum value of 

(lnp)2-1 (InIOO)2-1 
For P > 100 we have < 

p+1 101 

c(n) 
n 

< 
4 

max 
2~$IOO 

Using the computer, by a straight forward computation, it IS easy to prove that 

c(n) = 3 wich is reached for n = 8. 
n 8' 

c(n) 1 
Because rl < 4 for every n, 100 it results that max 

~ 

reached for n = 8. 

Remark 

c(n) 
n = 

... 
.) 

8 

There exists an infinite number of finite sequences { c ( k, ), c ( k, -I- 1), ... , c ( k2 ) I 
1-., 

such that L c(k) is a three-cornered number for k, ' k2 E N* (the n-th three-cornered 
1-.=", 

number is Tn = n(n-l- I) N* 
2 ,n E 1 ). 

de!" 

For example. in the case k, = Pl and k2 = PH ' two consecutive primes. we have the 

finite sequence : c ( Pl)' c ( Pl -I- I), ... , c ( PH - 1), c ( PH ) I and 

P~, (Pt-.+l - PI.. - 1 )(Pk+l - Pl.) 
L c(k) = 0 + (pl.+1 - pI,: - 1) ........ ~ 2 + 1 ~ 0 = = T P\;-I-1'k-1 
~I 2 

Of course. we can define the function c' : N \ { O. 1 ~ N, c' ( n ) = n - k, where k is 

the smallest natural number such that n - k is a prime number. but we shall give some 

properties of this function in another paper. 
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THE FUNCTIONS Bs(x) AND O~(x) 

by Y. Seleacu and ~t. Zanfir 

Department of Mathematics, University of Craiova, 
Craiova ( I 100), Romania 

In this paper we define the function Os:N\{O.I)~N and e~:N\{O,I,2l~N as 
follows: 

O<p:Sx 
p-prilllC 

O<pSx 
p-primc 

where S(px)is the Smarandache function defined in [3] (S(n) is the smollest integer m 

such that m! is divisible by n). 
For the begining we give some properties of the B function. Let us observe that, 

from the definition of B, it results: 

tZ~(2) = 5(22) = 4, 

tZ~(3) = 5(33
) = 6, 

tZ~(4) = S(24) = 6, 

tZ~(5) = 5(55
) = 25, 

O~(6) = 5(26
) + 5(3

6
) = 7 + IS = 22, 

Os(7) = 5(77) = 49, 

tZ~(8) = 5(2&) = 10, 

B~(9) = 5(39
) = 21, 

B~( 10) = S(2IO ) + S(5\O) = 12 +45 = 57. 

tZ~(II) = S(1111) = 121, 

O~ ( 1 2) = S (217 
) + S (3 12 

) = 43 . 

We note also that if p-prime than B~ (pp) = p2 . 

P,-oposition 1. 171e series L (B~(x)f I is cOIll'erKel/l. 
x~ 

_ I I I 1 
Proof L(B.(x» 1= __ + __ + __ + + 

. x~ . 5(22) 5(3.1) S(S5) S(2(,) + S(3(') 

I I I I 1 
+--+--+--+ + +---

S(77) 5(2x) S(39) S(2 IO ) + S(SIO) S(ll ll ) 

IX)( I 1 ) IX) I I <' -+ = ,-+ ' -L. 2 L.2 L. ' 
1=2 Pi (PV(x) -1)V(x) i=2 Pi P\"f',1X (PV(X) -1)V(x) 

where Vex) denote the number of the primes less or equal with x and divide by x. 
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~ 1 " 1 Of course the series L 2 and L 
i=2 Pi PV(./x (PV(X) -1)V(x) 

are convergent, so the 

propositionis proved. 

Proposition 2. 

lim T(n) = -00. 
n-.oo 

Let the sequence 
n 1 

T(n) = l-Ig Bs(n)+ L-.. 
i=20s(l) 

17,ell 

The proof is imediate because the series I _1_ is convergent according by the 
n=2 Bs(n) 

proposition 1. 

Proposition 3. The equation B,(x) = B,(x + 1) 
prime. 

(0) has no solution if x is a 

Proof If x is a prime number the equation become 

Using the inequality 

(p-1)a < S(pa) s; pa (1) 

given in [4], we have 

Let us presume that the equation (0) has solution. We have the following relation: 

2 x :5 (x + 1)(p· + p' + ... +p. ) 
II 11 IV('.I) 

(2) 

and we prove that 

(3) 

for x ~ 9. 

Let T]=pfl.p~I. ___ .p~r, Pi~Pj,i~j, the decomposition ofn into primes. We 

define the function fen) = 1+ aIPI+---+arPr and we show that f(n):5 n-2 for n ~ 9. If 
1 :5 n < 9 the precedent inequality is verified by calculus). For n ~ 9, we prove the 
inequality by induction: 
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f(9) = 7, f(10) = 8, f(12) = 8 < 10, true. 

Now let us suppose that fen) $ n-2, \;j n ~ 12, and we show that fen + 1) $ n-1. 

In this case we have three different situations: 
I) n + 1 = h = k l · k2' where k l• k2 are composed members. Using the true relation, 

f(h) = f(k l · k2) = f(k l) + f(k2) -I, we have 

f(h) = fen + I) = f(kd + f(k 2) - I $ kl - 2 + k2 - 2 -1 = k t · k2 - 8 - 5 $ 

:s; h - 2 = n + 1- 2 = n - 1 =:> fen + I) $ n - I. 

II) n + 1 = h = k t . k2. where, k t - prime, k2 - compounded, 

Conclusion: f(n):s; n - 2, \;j n ~ 9. 

Then fen) :s; n + 2 =:> 1 + alPI + a2P2 +"'+arPr $ n - 2 =:> 

We obtain 

Using (3) in (2) we have 

x2 :s; (x + I)(x -I) =:> x2 < x 2 
- I, imposible. 

Proposition 4. 171e equation 0s(x) = 0s(x + 1) has no so/utiol1/or (x I J) - prime. 

Proof We have O~(x + I) = (x + 1)2. 

We suppose that the equation has solution and with the inequalityes (I) is must that 

2 x x x 2· . (x+l) $x(p: +p: +"'+p: ):s;x ,Imposlble. 
I, I, 1\,,,, 

We give some particular value for 0s(x) = IS(p'X); 
ph 

p-primc 
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e5(3) = S(23
) = 4 

esC 4) = S(3
4

) = 9 

Bs(5) = S(25) + S(35) = 20 

es(6) = S(56
) = 30 

es(7) = S(2 7) + S(37) + S(S7) = 
=8+18+36=62 

e
5
(10) = S(310) + S(710) = 24 +63 = 87 

es ( 11) = S(211) + S(311 ) + S(SII) + S(711) = 16 + 27 + 

+50+73=163 

esC 12) = S(212) + S(712) + S(1112) = 50+77+ 

+121=248 

es(13) = S(213 ) + S(313 ) + S(SI3) + S(713 ) + S(1113) = 

=16+27+60+84+132=319. 

Proposition 5. The series I (es(x)r l is convergent. 
~ 

1 I -~ 
~3 S(pf) 
Pi{X 

Pi-prime 

1 1 
I 2~L2· 
~3 Pi ~x 

Pi~X 

Pi-prime 

Because the series I -;. is convergent, we have that our series is convergent. 
x~x 

Proposition6.lfT(n)=1-1ges(n)+±~ then lim T(n)=-oo. 
i=3 05 (I) n-+<J) 

Proposition 7. The equation 8s(x) = 8s(x + 1) has no solution if x+l=p-prime. 

Proof If x+ 1 is prime be wouldn't divide with any of prime numbers then him 
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0s(x + 1) = LS(pX+l) = S(p~+l) + S(p~+I)+ ... +S(pf::». 
p~x+l 

O<ps;x+l 

The number x is divisible with at least two prime numbers then him. In the case 

esCx) = LS(px) will have at least two terms S(pi) less then they are in es(x+ 1). 
~x t 

o<p:s;x 

Moreover S(pi) ~ S(pi+1
) and it results that es(x) < esCx + 1). 

Proposition 8. TI,e equation es(x) = es(x + 1) has no solution ifx=p-prime, x ~ 9. 

Proof using the function Fs(x) = LS(px) defined in [2] we have 
o<~x 

p-prime 

If our equation have solution OsCx) = Os(x + 1) then 

or 

Is known [2] that F,(x) - F,Cx + 1) < o. We have x2 - Bs(x + 1) < 0:::) x2 < OsCx + 1). 

Using (3) we have 

BsCx + 1) 5 (x + 1)(x -1) = x2 -1, therefore x2 < x2 -1, imposible. 

For x<9 is verified by calculus that the equation e,(x) = escx + 1) has not solution. 

Proposed problem 

1. B,(x) = Bs(x+l), X. x+l are composed numbers. 
- -

2. BsCx) = 0sCx + I), X, x+ 1, are composed numbers. 

Calculate 

4. lim G,(n), a E R. 
n~oo na 
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The function l1s (x) 

by 

Vasile Seleacu and Stefan Zanfir 

In this paper are studied some properties of the numerical function ITs : N* ~ N, 

ITs(x)= { mE ( 0, X ] I S ( m ) = prime number J, where S ( m ) is the Smarandache function, 

defined in [1]. 

Numerical example: 

ITs ( 1 ) = 0, ITs ( 2 ) = 1, ITs ( 3 ) = 2, ITs ( 4 ) = 2, ITs ( 5 ) = 3 , ITs ( 6 ) = 4, 

ITs ( 7 ) = 5, ITs ( 8 ) = 5, ITs ( 9 ) = 5, ITs ( 10) = 6 , ITs ( 11 ) = 7, ITs ( 12) =7, 

ITs ( 13)= 8,ITs( 14)= 9, ITs ( 15)= 10, ITs ( 16)= 10, ITs ( 17)= II,ITs( 18)= 11, 

ITs ( 19) = 12, ITs (20) = 13. 

Proposion 1. 

According to the definition we have: 

a) ITs ( x ) :::; ITs ( x .... 1 ), 

b) ITs ( x) = ITs ( x-I ) + 1, 

c) ITs (x):::; <D (x), 

where <p ( x ) is the Euler's totient function. 

Proposition 2. 

if x is a prime, 

if x is a prime, 

The equation ITs ( x ) = [~], in the hypothesis x ~ 1 and ITs ( x + 1 ) = ITs ( x ) has 

no solution in the following situation: 

a) x is a prime, 

b) x is a composite number, odd 

c) x .... 1 is the square of a positiv integer and x is odd. 
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Proof. 

U sing the reduction ad absurdum method we suppose that the equation 

n~ ( x ) =[~] has solution. Then ns ( x + 1 ) = [X:l ] 
I . Using the hypothesis we have • 

[X] [:<+1] :; = -;;- . false. 
- -

Because x + 1 is a perfect square we deduce that x is a composite number and because 

x is an uneven we obtain ( b ). 

Proposition 3. 

'i a 2:: 2 and k 2:: 2 S ( a" ) is not a prime. 

Proof. 

h S I. kuu u"...d If we suppose t at (a ) = p is a pnme, then p' = a PI 'P2 ~ .. " Po I-' an 

( al. , p ) = 1 We deduce that al
/ ( p - 1 ) , => 

S (ak
) ~ p - 1 < p, false. 

Proposition 4. 

v X E N*, we have. 

: x • i - :~ns(x)~x-[jX] ,., , 
'- -~ 

Proof. 

We used the mathematical induction. In the particular case x E {I, 2, 3, 4 } our 

inequality is verified by direct calculus. 

We suppose that the inequality is verified for x E N* and we proved it for x + 1. 

We have the following cases • 

1) x ..... 1 the prime number, with the subcases • 

a) x is not a square of some integer. Then ns ( x + 1 ) = ns ( x ) + 1. 

We suppose that ns (x ) ~ x - [jX] 
Let prove that ns ( x ..... 1 ) ~ x ..... 1 - [ J x + 1 ]. 
It results that ns ( x + 1 ) ~ x + 1 - [ rx;T] <=> ns ( x ) ~ x - [ ;;::;T]. 

It's enough to prove that x - [jXl~x-[Jx+ 1]. This relation is true because from our 

hypothesis it results that [ jX] = [ ;;:;T ] . 
- F or the left side of the inequality we have TIs ( x ) 2:: [~ ,true, and let prove 

i x + 1 -: 
that ns ( x + 1 ) >! -,.,- I. 

~ - J 
x+l 

Because ns ( x + 1 ) = ns ( x ) + I we have to prove that TIs ( x ) + 12:: ,., ... 
Therefore ns ( x ) 2:: [ x; 1 J - 1, that is a true relation. 

b) x perfect square. 

We suppose that ns ( x ) ~ x - [jX] is true. Then. 
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n~ ( x ) ~ x - I - [h"'="I] ~ ns(x) ....... I ~ x + I - [~] <=> ns(x) ~ x - [Jx + I ]. 

That is a true relation because [.[X] = [ J x ~ I ]. F or the left inequality the demonstration is 

analogous with ( a ) 

1) x pnme 

a) x - I is not a perfect square. 

We suppose that ns ( x ) ~ x - [.[X] is true. 
Let prove that ns ( x - I ) ~ x-I - [ ~ ]. 

In this case we have the tollowing two situations. 

( i ) If TIs ( x-I ) = TIs ( x ) - I. then we must prove that. 

ns ( x ) - I ~ x + I - [ J x-I ]. 

Supposing that ns ( x ) 2 i ;. , is true. let show that TIs ( x + I ) J x ; 1 or 
.--..., L.._+..., l _ 

TIs ( x ) ....... 1 2: x...:... I I, therefore TIs ( x ) 2 : x + 1 i-I and that results from the hypothesis. , .., , L ., , 

~(ii) If TIs (x + 1 ) = TIs (x). We-ha~e to prove that TIs (x) ~ x+l - [Jx"=I"] 

Of course this inequality is true. For the left side of the inequality we have to prove that 

TIs ( x ) 2 [ x ; I J. If we admit [ ~ J ~ TI s (x) < [ x; 1 ] we obtain that TIs ( x ) = [~J, x ~ 1. 

According to the Proposition 2. this inequality can't be true. 

Therefore we have TIs ( x ) 2 i x; 1 I. 
L _ J 

Let observe that x + I is not a perfect square, if x > 3 is a prime number. For 

x = 3 the inequality is verified by calculus. 

3) x is an even composed number. Then • 

a) Ifx T 1 is a prime. 

We know that TIs ( x + 1 ) = TIs (x) + 1. Then supposing TIs ( x):$; x - [JX] 
We have to prove that TIs ( x + 1 ) :$; x + 1 - [~] or TIs ( x ) = x - [ rx-:;=l J. 

This is true, because [JX] = I rx-:;=l i . 
- - - l 

For the left inequality we have to show TIs ( x + 1 ) 21 x; 1 i, 
,.. 'l l ~ - ..J 

or TIs ( x ) + 1 2i x ~ 1 I. But TIs(x) 2 r x; I i-I, is true. 
L.. - ...,.' L - -I 

b) If x + 1 is an odd composite number, then 

( i ) If ns (x + 1 ) = TIs ( x ) + 1, the demonstration is the same as at ( a ). 

( ii ) If TIs ( x ....... 1) = TIs ( x ), we have to prove that TIs ( x ) :$; x + 1 - [ .r;:;T J 
Obvious 

The left inequality is obvious. 

c) x + 1 perfect square. 

Using Proposition 3 we have only the case TIs ( x + 1) = fIs ( x· ). Then if we 

consider to be true the relation TIs ( x ) :$; x - [rx]. 
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Let prove that ns ( x ~~ I ) < x + I -l J x -+- I J 
But ns ( x ) ~ x ~ I - i J x -+- I 1 is true. 

"- - I 

For the left inequality we suppose that ns ( x ) ~ I ~ 
. 1_1 

:..... - ...... 

is true. We have to prove that 

. . i x ~ I 1 
Because ns ( x ~ I ) = ns ( x ) It results ns ( x ) ~ I -' -.,- ! 

So. we must have [~J ~ [ x; I J. This is true. because x ~ I ~s ;n ;dd number 

4) x is an odd composed number. 

a) Ifx + 1 is even composed number the proof is the same as in ( 1a ). 

For the right inequality we have: 

( i ) If ns ( x + I ) = nr ( x ) + } and we suppose that ITs ( x ) ~ x - [ IX], 
let to prove that ITs ( x + 1 ) ~ x + I - I ;;:;T J. 
This relation lead us to ITs ( x ) ~ x - [J x + I J. This is true because [ IX] = [ Jx+T J. 

( ii ) If ns (x + 1 ) = ITs ( x ) the proof is obvious. 

b) If x + 1 is a perfect square. 

In this case according to the Proposition 3 we have only the situation 

ITs ( x + 1 ) = ITs ( x ) . The right sided inequality is obvious and the left side inequality has the 

same proof as for ( 2a ). 

5) If x is a perfect square. 

a) Ifx is a prime and the only situation is that ITs ( x + 1 ) = ITs (x) + 1. The 

demonstration is obvious. 

preceding case. 

b) If x + 1 is a composite number. 

For the right inequality we have: 

( i) If ITs ( x + 1 ) = ITs (x + I), the proof IS analogous as in the 

( ii) If ITs ( x + 1 ) = ITs ( x) the proof is obvious. 

For the left inequality : 

If x + 1 is an odd composite number the relation is obvious. 

If x + 1 is an even composite number then : 

if ITs ( x + 1 ) = ITs ( x ) + I, the proofis analogous with ( a). 

if ITs ( x + 1 ) = ITs ( x ) then x can be just an odd perfect square. 

We suppose that ITs ( x ) ~ [~] is true. 

To show that ITs ( x ) ~[ x; 1 ,if we suppose, again, that ITs ( x ) < [ x; 1 ] 
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it results 

i x I x~ I I 
1_" ::;: ns(x) < 1-" -.,- j, and we have n. =I'~J 
..... L - ....J 

s .,. 

Proposition 5. 

lim [ ns ( 2n ) - ns ( n) ] = x. 
D-Jor 

Proof. 

According to the Propositiol1 .J we have: 

ns ( n )::;: n - [ In;T 1 < n < ns ( 2n ) ~ 
ns ( 2n ) - ns ( n ) > ( ~ J and lim [In;T J = X. 

D-+:F 
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ON THREE NUMERICAL FUNCTIONS 

by 

I. Balacenoiu and V. Seleacu 

In this paper we define the numerical functions <Ps, <Ps *, IDs and we prove some 

propenies of these functions. 

1. Definition. If Sen) is the Smarandache function, and (m, n) is the greatest common 

divisor ofm and n, then the functions <Os' <Ps * and IDs are defined on the set N* of the positive 

integers, with values in the set N of all the non negative integers, such that: 

<Ps(x) = Card{m EN* /0< m ~ x. (S(m), x) = I} 

<Ps *(x) = Cardlm EN* /0< m ~ x, (S(m), x) ~ I} 

(Os(x) = Card{m EN* /0< m ~ x, and SCm) divides x}. 

From this definition it results that: 

<Ps(x) + <Ps *(x) = x and IDs(x) ~ <Ps *(x) 

for all x E N*. 

2. Proposition. For every prime number p E N* we have 

<Ps(p) = P - 1 = <p(p), <Ps(p2) = p2 - P = <p(p2) 

where <0 is Euler's totient function. 

(1) 

Proof. Of course, if p is a prime then for all integer a satisfying 0 < a ~ p - 1 we have 

(S(a), p) = 1, because Sea) ~ a. So, if we note Ml (x) = {m EN* /0 < m ~ p, (S(m), p) = I} 

then a -= M1(p). 

!\r the same time. because S(p) = p, it results that (S(p), p) = p ~ 1 and so p e Ml(P)· 

Then we have <Ps(p) = P - 1 = <p(p). 

The positive integers a, not greater than p2 and not belonging to the set Ml(p2) are: 

p, 2p, ... , (p-l )p, p2. 
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For p = :2 this assenion is evidently true. and if p IS an odd prime number then for all 

h < P it results S(h· p) = p. 

N ·f 'd h h (S( ) ') 1 I d d ·f&". ILl IL, etr , 0\"'. I m < p- an m ~ p t en. m. p- = . n ee . I lor m = q I . q2 ... ·qr . qj :;t p 

we have (S(m), p2) :;:: I. then it exists a divisor q'"' ofm such that SCm) = Seq''') = q(a. - iet)' with 

. ia.-I il 
lu E ! 0: i -q- i i 

L.... _ .... ...J 

From (q( a. - i,~ ), p2) :;:: 1 it results (q( a. - i'L ), P ) :;:: 1 and because q:;:: p it results 

(a. - i,~, p):;:: I, so (a. - i,~, p) = p. But p does not divide a. - i," because a. < p. 

Indeed. we have: 

q" < p2 <=> a. < 110gqP :::; 1· ¥ = p 

because we have: 

log p :::; E. for q 2! 2 and p 2! 3 . 
q 2 

So, 

3. Proposition. For every x E N* we have: 

<ps(x) :::; x - t(x) + 1 

where t(x) is the number of the divisors ofx. 

Proof. From (1) it results that <Ps(x) = x - <Ps *(x), and of course, from the definition of 

<Ps * and t it results <Ps *(x) 2! t(x) - I. Then <Ps (x):::; x - t(x) + I. Panicularly, if x is a prime 

then <Ps(x):::; x - I, because in this case t(x) = 2. 

Ifx is a composite number, it results that <Ps (x):::; x - 2. 

4. Proposition. If p < q are two consecutive primes then: 

<Ps (pq) = <p(pq). 

Proof. Evidently, <p(pq) = (p - I) (q - I) and 

<Ps (pq) = Card{m EN* /0 < m:::; pq, (S(m), pq) = I}. 

Because p and q are consecutive primes and p < q it results that the multiples of p and q 

which are not greater than pq are exactly given by the set: 

M = {p, 2p, ... , pl, (p + I)p, ... , (q - I)p, qp, q, 2q, ... , (p - l)q}. 

These are in number of p + q - 1. 
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Evidently. (S(m). pq);:: I for mE lp.1p ..... (p - I)p. p2, q, 1q •.... (p - l)qJ. 

Let us calculate SCm) tor mEl (p -+- 1 )p. (p+ 1)p ..... (q - 1 )pl. 

Evidently. (p -+- i. p) = I for 1 ::; i ::; q - p - I. and so [p + i. p] = pep + i). 

It results that S(p(p + i) = S([p, p + i]) = max I S(p). S(p -+- i) I = S(p). 

Indeed. to estimate S(p + i) let p -+- i = P ~I • p~: ... p~h < q < 1p. 

Then p~1 < p. p~: < p .... p~h < p. 

It results that: 

S(p ~ i) = S(pt) < S(p), for some j = D. 
It results that: 

(S(p(p + i), pq) = (p, pq) = p ~ I. 

In the following we shall prove that if 0 < m ::; pq and m is not a multiple of p or q then 

(S(m). pq) = 1. 

It is said that ifm < pl is not a multiple ofp then (S(m), p) = 1. 

Ifm::; ql is not a multiple ofq then it results also (S(m), q) = 1. 

Now. if m < pl (and of course m < ql) is not a multiple either of p and q then from 

(S(m), p) = 1 and (S(m), q) = 1 it results (S(m), pq) = 1. 

Finally, for pl < m < pq < ql, with m not a multiple either of p and q, if the 

decomposition of m into primes is m = p~l . p~: ... p~s then Scm) = S(p~k) < S(p) = P so 

(S(m), p) = 1. 

Analogously, (S(m), q) = 1, and so (S(m), pq) = 1. 

Consequently, 

<Ps (pq) = pq - p - q -+- 1 = <Ps (pq). 

5. Proposition 

(i) If P > 1 is a prime number then c!)s (p) = 1, C!)S (pl) = p. 

(ii) If x is a composite number then c!)s (x) ~ 3. 

Proof. From the definition of the function c!)s it results that c!)s (p) = 2. 
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If I::; m ::; p!.trom the condition that S(m) divides p! it results m = 1 or m = kp, with 

k::;p-I.so: 

mE :l.p.1p ..... (p-l)p} and ffis(p!)=p 

Ifx is a composite number. let p be one of its prime divisors. 

Then. of course. L p, 1p Elm / 0 < m ::; x I. 

Ifp> 3 then: 

SO) = 1 divides x, S(p) = p divides x and S(2p) = S(p) = p divides x. 

It rezults ffis(x)~3. 

Ifx = 2u, with a ~ 1 then: 

S( 1 ) = 1 divides x. S(1) = 2 divides x and S( 4) = 4 divides x , 

so we have also ffis(x) ~ 3. 

6. Proposition. For every positive integer x we have: 

ffis(x) ::; X - q>(x) + 1. 

Proof. We have q>(x) = x - Card A., when 

A = 1m /0< m::; X, (m, x);to n. 

Evidently, the inequality (2) is valid for all the prime numbers. 

(2) 

If x is a composite number it results that at least a proper divisor of m is also a divisor of 

S(m) and of x. So (m, x);to 1 and consequently mEA. 

So. {m / 0 < m::; X, S(m) divides xl c A u {II and it results that: 

Card 1m! 0 < m::; x, S(m) divides xl ::; Card A-I, or 

ffis(x) ::; 1 + Card A., 

and from this it results (2). 

7. Proposition. The equation ffis(x) = ffis(x + 1) has not a solution between the prime 

numbers. 

Proof. Indeed, if X is a prime then ffis(x) = 2 and because x + 1 is a composite number it 

results ffis(X + 1) ~3. 
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Let us observe that the above equation has solutions between the primes. For instance, 

ffis(35) = ffis(36) = II. 

8. Proposition. The function <ps(x) has all the primes as local maximal points. 

Proof. We have (J)s(p) = p - 1, <Ps(p - I) ~ p - 3 < <Ps(p) and (J)s(p 1- I) ~ <Ps(p), because 

p ~ I being a composite number has at least two divisors. 

Let us mention now the following unsolved problems: 

(UP t ) There exists x E N* such that <Ps(x) < <p(x). 

(UP2 ) For all x E N* is valid the inequality 

ffis(x) ~ T(X) 

where T(X) is the number of the divisors ofx. 
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THE MONOTONY OF SMARANDACHE FUNCTIONS 
OF FIRST KIND 

by Ion BlIlcenoiu 
Department of Mathematics, University of Craiova 

Craiova (J 100). Romania 

Smarandache functions offirst kind are defined in [IJ thus: 

S,,:~ ~~, ~(k) = 1 and S,,(k) = max {Sp. (iJ.k)} , 
l:5jSr J 

where n = p~t . Jlz.2 ,,·1: and SPi are functions defined in [4]. 

They L 1 - standardise (~ , +) in (~, 50, +) in the ~ense that 

L I: max {S,,(a),S,,(b)} 50 S,,(a +b) 50 S,,(a) + S,,(b) 

foreverya,beJr aDd k2-standardise (~,+) in (~,5o,.) by 

L2: max (S,,(a),S,,(b)} s. S,,(a+b) 50 S,,(a)·S,,(b), for every a,b ENe 

In [2] it is prooved that the functions S" are increasing and the sequence {S,J }ieN- is 

also increasing. It is also proved that if p. q are prime numbers., then 

wherei e~. 
It would be used in this paper the formula 

1. Proposition. Let p be a prime number and kl,k" e ~. If Ie,. < k" then itt S. it2 • 

where itt ,it,. are defined by (1). 

Proof It is known that S,:~ ~ ~ and S,(k) = pk for k s. p. If S,(k) = mpa 

with m, a e ~ , (m, p) = 1. there exist a consecutive numbers: 
n,n + I, ... ,n+ a-I so that 
k e{n.n+ I •.... n+ a-I} and 
S,(n) = S,(n+ 1) = ... = S(n+ a-I), 
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this means that S p is stationed the a-I steps (k ~ k + 1). 

If k, < Is and Sp(k,) = Sp('s). because Sp(k,) = p(k, -ik,). Sp('s) = p(1s -i's) 

it results it. < it: . 

If Ie, < Ie,. and S p (Ie, ) < Sp ('s). it is easy to see that we can write: 

it, = /3, + r ( a-I) 
'" 

mp'" <Sp(k,)' 
then /31 E{O,1.2 •...• a-l} 
and 

mp'" <Sp(ls) 
A E{O.1.2 •...• a-l}. 

where 

where 

Now is obviously that Ie, <Ie,. and Sp(le,) <Sp(le,.) ~ it,S-it: . We note that, for 

Ie, < Ie,. • it. = it: iff Sp(kl ) < Sp(le,.) and {mp"'la> 1 and mp'" S- Sp(Ie,)} = 
{mp"'la> 1 and mp'" <Sp(le,.)} 

2. Proposition.Jfp is a prime number and p ~ S. then Sp > S~l and Sp > Sp+l' 

Proof Because p - 1 < p it results that Sri < S p' Of course p + 1 is even and so: 

(i) if p + 1 = Z. then i > 2 and because 2i < Z -1 = P we have Sp+l < Sp-

(11) if p+ 1 ~ i. let p+ 1 = p~1 . p;2 ..• P';. then Sp+I(k) = max{S 'j (k)} = S i. (k) = 
ISJs" Pj p. 

= Sp. (i", ·k). 

Because p", ·i", S II: S- p+ 1 < P it results that S i (k) < Sp(k) for k eff, so that 
2 P: 

Sp+l < Sp-

3. Proposition. Let p.q be prime numbers and the sequences of functions 

If p < q and i S j, then S; < SqJ . 

Proof Evidently, if p < q and i S j, then for every k e Jt 

SI (k) S S pi (k) < Sqj (k) 

so. SI < SqJ 

4. Definition. Let p.q be prime numbers. We consider a function Sr' a sequence of 

junctions {S; }ieNe, and we note: 

i(j) = ~{iIS; <Sr} 
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then {k E NliU ) < k < P )} = ~rI J = ~( . ) defines the interference zone of the junction S J 
(q ) J q 

with the sequence {S I} . 
P lEN" 

5. Renuuqlle. 
a) If S qJ < S, for i EN", then no\\ exists tlJ and pJ= 1. and we say that S qJ is separately 

of the sequence of functions {S I} . 
P leN" 

b) If there exist k EN" so that S,t < SqJ < S,t+1 , then ~,(qJ> = 0 and say that the 

function S qJ does not interfere with the sequence of functions { S II lieN" . 

6. Definition. The sequence {x,,} ° is generaly increasing if 
"eN 

"In E IV 3mo E IV so that x". ~ x" for m ~ mo. 

7. Renuuqlle. If the sequence {.r"},,eN0 with x" ~ 0 is genera1y increasing and 

boundled, then every subsequence is genera1y increasing and boundled. 

8. Proposition. The sequence {S" (k)} "eN"' where k E IV. is in generaiy increasing 

and boundJed 

Proof Because SlICk) = S,,1t (1), it results that {S,,(k)}"eN" is a subsequence of 

{Sill (1)} IIH!N"' 

The sequence {SIII(l)}IIH!N" is genera1y increasing and boundled because: 

From the remarque 7 it results that the sequence {S" (k)} ° is genera1y increasing 
"VI 

boundled. 

9. Proposition. The sequence offimctions {S"}"eN" is generaly increasing boundled 

Proof Obviously, the zone of interference of the function Sill with {SIll ° is the set 
"eN 

,fill> = min{n EN"ISIII <SIll. 
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The interference zone .1.11(",) is nonemty because S", E .1.11(",) and finite for S\ ::; S", ::; Sp. 

where P is one prime number greater than m. 
Because {S,,(1)} is generaly increasing it results: 

'rim e~ 3/0 eN- so that Sr(1) ~ S",{l) for "iIt ~ to. 

For ro = to + rI-"') we have 

S,. ~ S", ~ S",(1) for "iIr ~ro. 

so that {S"}"eN. is generaly increasing boundled. 

10. Re1lllUt{1lt!. 

a) For n = p~1 . Iii ... Ii: are posible the following cases: 

1) 3 k E{1.2 •...• r}so that 

S.JI ::; S '. for j E {1.2 •...• r}. 
I'j p. 

then S" = S ik and IIt is named the dominant factor for n. 
Pk 

forn. 

2) 3 k\.k.z , ...• k'" E {1.2 •...• r} so that : 

"iItE1.m 3qrE~ sothatS,,{q,)=Sit, (q,) and 
Pkr 

We shall name {p~~r It E l.m} the active factors, the others wold be name passive factors 

b) We consider 

For n eN PlPl appear the following situations: 

1) il E{O.i:;Z)], this means that p~1 is a pasive factor and Pi is an active factor. 

2) · (' ;(;.,» this that il d ~ . fact 
'1 E ' 1(;2) ,11 - means PI an Pi. are acnve ors. 

3) il E[lii2 ). co) this means that p;1 is a active factor and Jl,,2 is a pasive factor. 
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For PI < P2 the repartion of exponents is representJy in following scheme: 

I 
I 

n 

2 : The zcme of e:ltpOIICDIS 

: for numbers of type I) 
..... I 

..... " I ..... 

The ZOIIC of ~ 

for numbers of type 3) 

c) I consider that 

where Pt < P2 < PJ are prime numbers. 

Exist the following situations: 

..... ..... ..... ..... ..... ..... 

I) n e NPj,j = 1.2.3 this means that pi is active factor. 

..... ..... ..... ..... 

2) n e NPjPt , j ~ k; j,k e {1.2.3}. this means that lj ,p~ are active filctors. 

3) n e NPlPlPJ , this means that pit ,[i.l.~3 are active factors. NPlI'ZPl is named the S­

active cone for N PI I'Z Pl . 

Obviously 

NPlI'ZPl = {n= p.t~2~lil,~,i3 elf and it E(i1c(lj),11iJ» where j~ k;j,k E{I.2.3}}. 

The reparrision of exponents is represented in the following scheme: 
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2) n e NPjPt , j ~ k; j,k e {1.2.3}. this means that lj ,p~ are active filctors. 
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active cone for N PI I'Z Pl . 
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NPlI'ZPl = {n= p.t~2~lil,~,i3 elf and it E(i1c(lj),11iJ» where j~ k;j,k E{I.2.3}}. 

The reparrision of exponents is represented in the following scheme: 



d) Generaly, I consider N PI Pl .•• p,. = {n = flIl . pi· ... ·1: IiI' ~, ... , ir E Jr} , where 

PI < P2 < ... < Pr are prime numbers. 
On N PI Pl .. _p,. exist the following relation of equivalence: 

n pm<=> n and m have the same active factors. 

This have the following clases: 
- NPj}, where jl E{1.2 •...• r}. 

n E NPj} <=> n base only P~~ active factor 

- NPj}Pn., where jl ;:C j" and jl,j" E{1.2 •...• r}. 

n E NPj}Pn. <=> n has only pij} pin. active factors 
11' 12 . 

NPlPl···Prwich is named S-active cone. 

N PlPl·_·P,. - {n EN In has pil pil .;,. "-;"e factors}. 
- PlPl .•• P,. I' ",···,Yr ca."" 

Obvi us! if N PlPl-Pr th . (. .(ij ») with k . d k . {I 2 } o y, n E , en 'I: E II:(ij),ll: ;:C j an ,j E , •...• r . 
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THE SMARANDACHE NEAR-TO-PRIMORIAL (S.N. T. P.) FUNCTION 

by 

M. R. Mudge 

Definition A. 

The PRIMORIAL Function, p*, of a prime number, p, is defined be the product of the 

prime numbers less than or equal to p. e.g. 7* = 2·3·5· 7 = 210 similarly 11 * = 2310. A number, 

q, is said to be near to prime if and only if either q+ I or q-l are primes it is said to be the 

mean-of-a-prime-pair if and only if both q+ I and q-l are prime. 

p such that p* is near to prime: 2, 7, 13,37,41, 53, 59,67, 71, 79, 83, 89, ... 

P such that p* is mean-of-a-prime-pair: 3, 5, 11, 31, ... 

TABLE I 

P 2 3 5 7 11 13 

p*-1 1 5 29p 209=11·19 2309p 30029p 

p* 2 6 30 210 2310 30030 

p*+1 3 7 31p 211p 2311p 30031=59·509 

Definition B. 

The SMARANDACHE Near-To-Primorial Function, SPr(n), is defined as the smallest 
prime p such that either p* or p* ± 1 is divisible by n. 

n 1 

SPr(n) 2 

2 

2 

3 

2 

4 

5 

5 

3 

6 

3 

Questions relating to this function include: 

1. Is SPr(n) defined for all positive integers n ? 

2. What is the distribution of values ofSPr(n)? 

7 

3 

8 

5 

9 

? 

10 

5 

3. Is this problem fundamentally altereted by replacing p* ± 1 by p* ± 3, 5, ... 

Current address: 
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A Note on the Smarandache Near-To-Primorial Function 

Charles Ashbacher 
Decisionmark 

200 2nd Ave. SE 
Cedar Rapids, IA 52401 USA 

In a brief paper passed on to the author[I], Michael R. Mudge used the definition of the 
Primorial function: 

Definition: For p any prime, the Primorial function ofp, p* is the product of all prime 
numbers less than or equal to p. 

Examples: 

3* = 2 * 3 = 6 
11 * = 2 * 3 * 5 * 7 * 11 = 23 10 

To define the Smarandache Near-To-Primorial Function SPr(n) 

Definition: For n a positive integer, the Smarandache Near-To-Primorial Function SPr(n) 
is the smallest prime p such that either p* or p* + 1 or p* - 1 is divisible by n. 

A table of initial values is also given 

n 
SPr(n) 

1 2 3 4 5 6 7 8 9 10 11 ... 59 
22253335? 511 ... 13 

and the following questions posed: 

1) Is SPr(n) defined for all positive integers n? 
2) What is the distribution of values ofSPr(n)? 
3) Is this problem fundamentally altered by replacing p* ± 1 by p* ± k for k = 3,5, ... ? 

The purpose of this paper is to address these questions. 

We start with a simple but important result that is presented in the form of a lemma. 

Lemma 1: If the prime factorization of n contains more than one instance of a prime as a 
factor, then n cannot divide q* for q any prime. 

Proof: Suppose that n contains at least one prime factor to a power greater than one, for 
reference purposes, call that prime pl. The list of prime factors of n contains a largest 
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prime and we can call that prime p2. Ifwe choose another arbitrary prime q, there are two 
cases to consider. 

Case 1: q < p2. Then p2 cannot divide q*, as q* contains no instances ofp2 by 
definition. 

Case 2: q ~ p2. In this case, each prime factor ofn will divide q*, but since pI appears 
only once in q *, P 12 cannot divide q *. Therefore, n cannot divide q * as well. 0 

We are now in a position to answer the first question. 

Theorem 1: Ifn contains more than one instance of2 as a factor, then SPr(n) does not 
exist. 

Proof: Choose n to be a number having more than one instance of 2 as a factor. By 
lemma 1, there is no prime q such that n divides q*. Furthermore, since 2 is a prime, q* is 
always even. Therefore, q* ± 1 is always odd and n cannot evenly divide it. 0 

The negative answer to the first question also points out two errors in the Mudge table. 
SPr(4) and SPr(8) do not exist, and an inspection of the given values verifies this. The 
Primorial of 5 is 2*3*5 = 30 and no element in the set { 29,30,31 } is evenly divisible by 4. 

By definition, the range ofSPr(n) is a set of prime numbers. The obvious question is then 
whether the range of SPr(n) is in fact the set of all prime numbers, and we state the answer 
as a theorem. 

Theorem 2: The range of SPr(n) is the set of all prime numbers. 

Proof: The first few values are by inspection. 

SPr(1) = 2, SPr(5) = 3, SPr(10) = 5 

Choose an arbitrary prime p > 5 and construct the number p* - 1. Obviously, 
p* - 1 divides p* -1. It is also clear that there is no prime q < p such that q*, q* + 1 or 
q* - 1 is divisible by p* -1. Therefore, SPr(p* - 1) = P and p is in the range of 
SPr(n).O 

Which answers the second question posed by M. Mudge. 

It is easy to establish an algorithmic process to determine if SPr(n) is defined for values 
of n containing more than one instance of a prime greater than 2. 

The first step is to prove another lemma. 
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Lemma 2: If n contains a prime p that appears more than once as a factor of n, and q is 
any prime q 2: p, then n does not divide q* ± I. 

Proof: Let n, p and q have the stated properties. Clearly, p divides q* and since q is 
greater than I, P cannot divide q * ± I, forcing the conclusion that n cannot divide q * ± I 
as well. Combining this with lemma 1 gives the desired result. 0 

Corollary: If n contains some prime p more than once as a factor and SPr(n) exists, then 
the prime q such that n divides q* ± I must be less than p. 

Proof: Clear. 0 

The next lemma deals with some of the instances where SPr(n) is defined. 

Lemma 3: Ifn = PIP2 ... Pk, where k 2: I and all Pi are primes, then SPr(n) is defined. 

Proof: Let q denote the largest prime factor ofn. By definition, q* contains one instance 
of all primes less than or equal to q, so n must divide q*. Given the existence of one such 
number, there must also be a minimal one. 0 

Combining all previous results, we can create a simple algorithm that can be used to 
determine if SPr(n) exists for any positive integer n. 

Input: A positive integer n. 
Output: Yes, ifSPr(n) exists, No otherwise. 

Step 1: Factor n into prime factors, PIP2 ... Pk. 
Step 2: Ifall primes appear to the first power, terminate with the message "Yes". 
Step 3: If2 appears to a power greater than 1, terminate with the message "No". 
Step4: Set q = 2, the smallest prime. 
Step 5: Compute q* + 1 and q* - 1. 
Step 6: Ifn divides q* + 1 or q* - I, terminate with the message "Yes". 
Step 7: Increment q to the next largest prime. 
Step 8: If q 2: p, terminate with the message "No". 
Step 9: Goto step 5. 

And this algorithm can be used to resolve the question mark in the Mudge table. Since 9 
does not divide 2* ± 1, SPr(9) is not defined. Furthermore, 3 to any power greater than 2 
also cannot divide 2* ± 1, so the conclusion is stronger in that SPr(n) is not defined for n 
any power of 3 greater than 3. 

Note that modifications of this algorithm could be made so that it also returns the value of 
SPr(n) when defined. 



These conclusions can be used to partially answer the third question. The conclusion of 
lemma 3 concerning all prime factors to the first power is unaffected. However, if q > 3 
and q prime, then q* ± 3 is also divisible by 3, making solutions possible for higher 
powers of 3. Such results do indeed occur, as 

3* + 3 = 9 

so that the modified SPr(9) = 9. 

Reference 
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PRIMES BETWEEN CONSECUTIVE 
SMARANDACHE NUMBERS 

by 

G. Suggett 

I assume that the range between Sen) and S(n+ 1) should be interpreted as 
including the endpoints ? If one is looking for cases in which there are no primes 
in the open interval between the two consecutive values, then the range of 
exceptions is much larger, including n = 1, 2, 3, 4, 5, 9, 14, 15, ... Using the 
closed interval gives a much smaller list of exceptions, starting, as you state, with 
n = 224. I have confinned that the next value is n = 2057, but to go further on a 
systematic basis would be far too time-consuming. However, taking the hint 
about prime pairs, I have found the following: 

Associated with the prime pair (101, 103): 265225, 265226 

Associated with the prime pair (107, 109): 67697937,67697938 

Associated with the prime pair (149, 151): 843637, 843638 

Associated with the prime pair (461,463): 24652435, 24652436 

Associated with the prime pair (521, 523): 35558770,35558771 

Associated with the prime pair (569, 571): 46297822, 46297823 

Associated with the prime pair (821,823): 138852445, 138852446 

Associated with the prime pair (857, 859): 157906534, 157906535 

Associated with the prime pair (881, 883): 171531580,171531581 

Associated with the prime pair (1061, 1063): 299441785, 299441786 

Associated with the prime pair (1301, 1303): 551787925, 551787926 

Associated with the prime pair (1697, 1699): 1223918824, 1223918825 

Associated with the prime pair (1721, 1723): 1276553470, 1276553471 

Associated with the prime pair (1787, 1789): 5108793239997, 5108793239998 

Associated with the prime pair (1871, 1873): 6138710055036, 6138710055037 

Associated with the prime pair (1877, 1879): 1655870629, 1655870630 

Associated with the prime pair (1949, 1951): 1853717287, 1853717288 

Associated with the prime pair (1997, 1999): 1994004499, 1994004500 

Associated with the prime pair (2081,2083): 2256222280, 2256222281 

Associated with the prime pair (2111,2113): 9945866761776, 9945866761777 

Associated with the prime pair (2237,2239): 2802334639, 2802334640 

Associated with the prime pair (2381,2383): 3378819955, 3378819956 

so 



Associated with the prime pair (2657,2659): 4694666584, 4694666585 

Associated with the prime pair (2729,2731): 5086602202, 5086602203 

Associated with the prime pair (2801,2803): 5499766300, 5499766301 

Associated with the prime pair (3251,3253): 55912033969191, 55912033969192 

Associated with the prime pair (3257, 3259): 8645559934, 8645559935 

Associated with the prime pair (3461,3463): 10373399185, 10373399186 

Associated with the prime pair (3557,3559): 11260501609, 11260501610 

Associated with the prime pair (3581,3583): 11489910655, 11489910656 

Associated with the prime pair (3671, 3673): 90891127331586, 90891127331587 

Associated with the prime pair (3917,3919): 15036031219, 15036031220 

Associated with the prime pair (3929, 3931): 151746113 02, 15174611303 

Associated with the prime pair (4001,4003): 16024009000, 16024009001 

Associated with the prime pair (4127,4129): 145169740720152, 145169740720153 

Associated with the prime pair (4217,4219): 18761158894, 18761158895 

Associated with the prime pair (4241,4243): 19083231940,19083231941 

Associated with the prime pair (4421,4423): 21617036545,21617036546 

Associated with the prime pair (4517,4519): 23055716569, 23055716570 

Associated with the prime pair (4547,4549): 213896677247667, 213896677247668 

Associated with the prime pair (4649,4651): 25136152762, 25136152763 

Associated with the prime pair (4721,4723): 26321940220, 26321940221 

Associated with the prime pair (5009,5011): 31437871492, 31437871493 

Associated with the prime pair (5021,5023): 31664313895, 31664313896 

Associated with the prime pair (5099, 5101): 338226861243825,338226861243826 

Associated with the prime pair (6089,6091): 56466627682, 56466627683 

Associated with the prime pair (6197,6199): 59524353949, 59524353950 

Associated with the prime pair (6569,6571): 70898343322, 70898343323 

Associated with the prime pair (6701,6703): 75258100075, 75258100076 

Associated with the prime pair (6869,6871): 81060670597, 81060670598 

Associated with the prime pair (7457, 7459): 103706773384, 103706773385 

Associated with the prime pair (7589, 7591): 109311364057, 109311364058 

Associated with the prime pair (7757, 7759): 116731835059, 116731835060 

and so on. I am reaching the limits of my computational power, but with no 
obvious end in sight to the list. Do you have a copy of Radu's proof that the set is 
finite? Does it give an upper bound on the values in the set? I am intrigued. 

Current address: 

34 Bridge Road, Worthing, 
West Sussex, BN14 7BX, U.K. 
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Introducing the SMARANDACHE-KUREPA 
and SMARANDACHE-WAGSTAFF Functions 

by 

M. R. Mudge 

Definition A. 

The left-factorial function is defmed by D.Kurepa thus: 

!n = O! + I! + 2! + 3! + ... + (n-l)! 

whilst s. s. Wagstaff prefers: 

Bn = !(n+ 1) - 1 = 1! + 2! + 3! + ... + n! 

The following properties should be observed: 

(i) !n is only divisible by n when n = 2. 
(ii) 3 is a factor of Bn if n is greater than 1. 
(iii) 9 is a factor ofBn ifn is greater than 4. 
(iv) 99 is a factor ofBn ifn is greater than 9. 

There are no other such cases of divisibility ob Bn for n less than a thousand. 
The tabulated values of these two functions together with their prime factors 

begin: 

TABLE I. 

n !n Bn 
1 1 1 

2 2 3 

3 4=2·2 9=3·3 

4 10=2·5 33=3·11 

5 34=2·17 153=3·3·17 

6 154=2·7·11 873=3·3·97 

7 8742·19·23 5913=3·3·3·3·73 

8 5914=2·2957 46233=3·3·11·467 

9 46234=2·23117 409113=3·3·131·347 

10 409114=2·204557 

52 



"Intuitive Thought": There appear to be a disproportionate (unexpectedly high) 
number of large primes in this table? 

Definition B. 

For prime p not equal to 3 defme the SMARANDACHE-KUREPA Function, 
SK(P), as the smallest integer such that !SK(P) is divisible by p. 
For prime p not equal to 2 or 5 defme the SMARANDACHE-WAGSTAFF Function, 
SW(P), as the smallest integer such that Bsw(p) is divisible by p. 

The tabulation of these two functions begins: 

P 
SK(p) 

SW(p) 

2 

2 

* 

3 

* 
2 

5 

4 

* 

7 

6 

? 

TABLE II. 

11 

6 

4 

13 

? 

? 

17 

5 

5 

19 

7 

? 

23 

7 

? 

131 

? 

9 

Where the entry * denotes that the value is not defined and the entry ? denotes 
not avaible from TABLE I above. 

Some unanswered questions: 

1. Are there other (*) - entries i.e. undefined values in the above table. 
2. What is the distribution function of integers in both SK(P), SW(P) and their 

union? 
3. When, in general, is SK(P) = SW(P) ? 

Current address: 

22 Gors Fach, Pwll-Trap, 
St. Clears, Carmarthen, 
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ABOUT THE SMARANDACHE CCNPLEMENTARY CUBIC FUNCTION 

by :\'Iarcela Popescu and Mariana ~icolescu 

DEFL"lTIOX Let g:~- ~ ~- be a numericalfuncrion defined by g(n) =: k, where k IS 

the smallest natural number such that nk is ~1 per/ecr cube: nk =: s3, S E !'I(. 

Er:amples: 1) g(7)=49 because 49 is the smallest natural number such that 

7·49= 7·7:= 73: 

2) g(12) = 18 because 18 is the smallest natural numhcr su.;h that 

12 ·18 = (22. 3). (2.32 ) = 23 .33 = (2·3)3 ; 

3) g(27) = g(33
) = 1: 

-t) g( 54 ) = g(l· 33 
) = 22 = g(2) . 

- ~ ~ PROPERTY 1. For ew.''}' n <:: N , g( n-) = 1 and for every prime p we have g( p) = p-. 

PROPERnr 2. Let n be a composire natural number and n = pIX' . pa" ..... p~' , 
1: 12 1,-

0< Pi: < Pi: < ... < Pi, ' ll;.: ' ll;.: ' ... , ll;., E ~- its prime factOrIzation. Then 

g( n) = pt ~I ) • p~(~2) ..... p~(alf) , where ~i is the remainder of the division of aiJ by 3 and 

d:{O.1,2} ~ {O,l. 2} is the numericalfimction defined by d(O) = O,d(l) = 2 and d(2) = 1. 

If we take into account of the above definition of the function g, it is easy to prove the 
above properties. 

OBSERVATION: d(lli )=3-lli , tor every C1j. <::N-, and in the sequel we use this 
• J J 

writing for its simplicity. 

RE.MARK 1. Let m E ~- be a fIXed natural number. fr we consider now the numerical 

function g:2\'- ~ ~- defined by g(n) = k. "'~'here k is the smallest namral number such that 

nk = sm,s <::N-, then we can obserw that g generali=e the jimction g, and we also hCl':e: 

-( m 1 '\.7- -( m-J w . d -( rn-a. m-a." rn-a. h g n')= , "'7nEl'f. g p)=p ,'/P prIme an g n)=pi
l 

>·Pi
2 

...... Pi
f 

Of, were 

n = p~: . p~: .... 'P~ is the prime jactori=ation oj 11 and ai. is the remainder of the division of 
. - . 

a by m. thereJore the both abm'e properties holds for g , too. 1. 

RE~:lARK 2. Because 1:;; g(n).:. n2 • J'(jJ ,,"very n E~-. we have: 

,g(n) is a divergent serie. 
~1 n 
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in ... szmzlar way. usmg that we have Is. g(n) s nm- 1 Jar every n ~N-. it results that 

'" g(n) is also divergent. 
fl21 n 

PROPERTI' 3. The function g:~-.~~. is multiplicatIVe: g(x·y) = g(x)·g(y) for 

eWl}: X. y ~ ~- with (x, Y) = 1. 

Proof For X= 1= Y we have (x,y)= 1 and g(I·I) = g(I)· g(I). 
• a., a,. 0;. X = p ... p ....... p . 

L 1: 1. 
and y = qP.: . q.B.: ..... qA be the prime factorization of x and y, 

J; J: J, 

repectively, so that X· Y = 1. 

Because (x, y) = 1 we have Pih == qjk' for eve!!' h = 1. r and ~: = 1.". 

3--a 3--(.( 3-u 3-j3 3-p 3-p 
Theng(x,.v)=p ':.p .. 2 ..... p "'q"q 12 ..... q )'=g(x).g(y). 

L 1: 1, .1- J: J. 

REMARK 3. The property holds also for the function g:g(x·y)=g(X)·g(y). where 
(x.y) = 1. 

PROPERTI' 4. If(x.y)= 1. X andy are not perfect cubes andx.y>l. then the equation 

g(x) = g(y) has not natural solutions. 

r 
Proof Let x = TI p~~ and 

~l ~ 
y= riq~k (where Pi~ ;z:qiJ.,'ih=1,r,k=1,s, because 

k=l 

(x,y) = 1) be their prime factorizations. 
r 3-a 5 3-P 

Then g(x) = Dtih 'b and g(y) = D qjk Jk and 

there exist at least ai == 0 and /lJ' ;z: 0 
• k 

(because x and y are not perfect cubes), therefore 

3-a 3-j3 
1;Z:Pi~ 'b ==q.it )k ;z:1, sog(x);z:g(y). 

CONSEQl.J~NCE 1. The equation g(x) = g(x '"" 1) has not natural solutions because 

for x 2: 1. x and x~ I are not both perfect cubes and (x, x ..,..1) = 1. 

RE~L\RK 4. The property and the consequence is also true for the function 

g: if (x.y) = 1, X> 1, y:> 1. and it does not exist :l, bEN- so that x = am. y = bm (where m is 
fixed and has lhe above signijicance). then the equation g(x) = g(y) has not natural 

solutIOns; the equation g(x) = g(x ~1), x 2= 1 has not natural solutions. too. 

It is easy to see that the proofs are simi/aT'}" but m this case we denote by aij:= all 

(mod m) and we replace 3- a by rn - a . 
1, :! 

PROPERTY 5. We have g(x·y':) = g(x).for every x,y EN-. 

Proof If (x, y) = 1, then (x, y3) = 1 and using property 1 and property 3, we have: 

g(x, y3) = g(x). g(y3) = g(x). 
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r n 
If (x.y);:: 1 we can write: x = TIp~:o . TI dt' and where 

h=l !=l' 

- - - • r (I n u: 
Pi

b 
:::: d~ ,qj. = d~. Pi., ;: qj. ,'7h = Lr,k = L5 , t = Ln. We have g(x,y')= g<TIPi.,'h . TI d1t :

t . 
h=! . t=1 

5 '13 n 3ft's n r s 3{3 n 3{J. 
. TI qj" < • TI dL : ) = g(f1 p:~" . f1 '/'::' . f1 dt· +)f,. ) = g( TIP~': . TI qj,:i<) 'g(TI dt'... .:) = 
k=! 1=1 ;'=1 ... =1 t=1 h=! k=! t=1 

r 3-a s 3-3/3 n 3-a. T3/3.. r 3-a r 3-a ran a. 
=TIPic '!'TIq; ·'·TId!. ':'=f1Pi ... f1dz .; =g(f1Pi~)·g(f1dl.t)= 

h=1" koo1' t=1' 17=1' t=l' 17=1'· t=l' 
r n 

= g(TIP~': . TId~t) = g(x). 
h=1 h t=1 

ran a 
We used that (TIpi 'b. TI dl.·t 

) = 1 and 
h=; h t=1 . 

above properties. 

r a S 3fJ n a -3f? (TIp. 'b·TIg Jlc.TId·' 1"1')=1 
lb lit 1. 

11=1 1;=1 - t=1' 

and the 

RE1VIARK 5. It is easy to see that we <.llso have g(x·ym) = g(x). for every x,y E I"-. 

OBSERVATION. {f" ~ = u:. where ~ is a simp/tfiedjraction. then g(xj=g(l~. It is 
v v v 

easy to prove lhis because x = 1m3 and y = lv3
. and using lhe above property we have: 

g(x) = g(k· u3
) = g(k) = g(k·~) = g(y) 

OBSERVATIO~. If 
X um 

U y = vn where ~ is a simplified fraction, then, using remark 5. 

we have g(x) = g(y), too. 

CONSEQUE~CE 2. For every X EN- and n EN. 

{

L tf"n = 3k; 

g(xn) = g(x), ifn = 3k ..... 1; 

g:(x), if n = 3k+ 2, kEN, 
'"' where g-'"(x) = g(g(x». 

Proof If n=3k, then xn is a perfect cube, therefore g(xn) = 1. 

Ifn=3k .... L then g(xn) = g(x3k . x) = g(x3k). g(x) =. g(x). 

Ifn=3kT2. then g(xn) = g(x3k . x:) = g(x3k )_g(x:) = g(x:). 

PROPERTY 6. g(~) = g2(x), for every x E N*. 

r 
Proof Let x = TI p~h be the prime factorization of x. Then 

h=l .. 

r 2£1. r 3-2a r 3-a r 3-3-a 
g(~) = I!( TIp· 'b) = TIp· Ib and a2(x) = I!(g(x)) = a( TIp· 'h) = TIp· lb. but it is 

,- 1.' 1. ::> " - ' , '::: 1 1.' 
h=1" h=1 - h=1 ~ h=1 .. 

easy to observe that 3- 2a" = 3- 3- a", because for: 
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-
ar, = 0 3 - 2 a. = 3 - 0 = 0 ~d 3-3-a~=3-3-0=3-0=O 

a. = 1 3-2u:.=3-2=1 ~d 3-3-a =3-3-1=3-2=1 
I. 

-
a ,• = 2 3 - 2 u = 3 - 4 = 3 - 1 = 2 ~d 3 - 3 - u = 3 - 3 - 2 = 3 - 1 = 2, 

I~ l~ 

,., 2 -RE::'vIARK 6. For the function g is not tme that g(:'~-) = g (x), 'ix '=~ . For example. 
~ ""),...,..J ""'.... "'" 

for m=5 and x = 3-. g(X-) = g(.j )=3 while g(g(J'» = g(3"') = 3-. 

ivlore generally g( xk) = gk( x). 1ix -= N- is not true. But for particular valu~s of tn.k and x 

the above equality is p()~~ji·!..: .0 be true. For example for m = 6, x = ::: and 

k=2: g(x:)=g(24)=22 ~d g2(X) =g(g(:2» = g(24) = 22. 

RD-l<\RK 6'. a) g(.1:,",-I) =g",,-l(X) jor every! x ~~' iffm is an odd number. because we 

have m-(m-l)ai = m-m-... - m- ai ,jor every ai ENo " ~ :, 
+ 

m-l tunes 
Example: For m = 5, g(X4) =g4(x),jor every x E~'. 

b) g(.·e"-l) =g'''(x).jor ewry x E~' tlfm is an even number. because we 

have m-(m-l)aj =m-m-... - m-aj ,joreveryu, E~o " ~ ~ . 
m times 

Example: For m= 4. §(x3
) =g4(x).jor every x EN'. 

PROPERTY 7. For every x E~· we have g3(X) = g(x). 

r r ~~ 
;:,0,)6/ Let x = I1p~;;, be the prime factorization ofx. \Ve saw that g(x) = I1Pi 1~ and 

h=l - h=1 h 

... " r 3-~~ r 3-3-3-~ 
g"(X)=g(g~(x»=g(DPi - ")=Dpi ". 

h=l • h=l • 

But 3-a = 3-3-3-a, for every eLi E:\'. because for: . .. " 

Ui =1 
h 

- - - --
~a =0 ~d 3-3-3-a =3-3-3-0=3-3-0=3-0=0 

~ " 

3-;- = 2 ~d 3-3-3-~ = 3-3-3-1 = 3-3-2 = 3-1 = 2 
·il '" 

therefore g}CX) = g(x), for every x E~t. 
57 



REMARK 7. For every X EN- we have g\x) = g(x) because m - a;. = m - m - m - a;. , 
h h 

for :!'.·..:ry ~ EN. For a; = a E {l, ... ,m -I} = A, we have m - a;. = m - a eA, therefore ~ ~ h 

m - m- a;. = m -em -a) = a = a, so that m- m-m- n· = m- a = m- n· , which is also true h 'b'h 

for a:~ = 0, therefore it is true for every ai eN·. 
~ 

PROPER1Y 8. For every x,y EN- we have g(x·y) = g2(g(X).g(y». 

r n s p n • .8. Proof. Let x = IIp:b . 11 drl
, and y = IT qjltit ·11<1'1." be the prime factorization of x 

h=1 t=1 k=1 t=1 

and y, respectively, where Pi. ~dl ,qJ' ~dl,Pi ~qi ,'dh=1,r,k=1,s,t=1,n. Of course h tit th.ll: 

r aSp n ~ +f3.. r 3-a 5 3-p. n 3-( +/J,.) X·y= IIp, 'h. I1q.Jk ·TId t t, SO g(x·y)= IIp, 'h. I1q. lit • TId ~I '1. On the h Jk 1. Ih A 1. h=1 - k=1 t=1' h=1 k=1 t=1 . 
r 3-a n 3-- s 3-p n 3-A other hand, g(x) = ITPi 'h. IT d1 IZtI and g(y) = TI q. "'. IT dl I, so that 

h=1 b t=1 t k=1 JIt t=1 1 

~ r 3-a. s 3-p n 3-1Zt +3-A r 3-3-3-a s 3-3-3-/3 g2(g(X)·g(y»=g-(ITP· 'b. ITq. lk 'ITci~ 1 1)= rIp. to .rIq. 111. Ib .lit 11 1 ) h=1 k=1 t=1 h=1 It k=1 1 

n 3-3-(3-a +3-P) r 3-a s 3-/3 n 3-(~ +/3, ) . IT d 1 Ir ~ = n p. ". IT q. 11. IT d 1 ~ = g(x· y), because I lit Jl I t=1 h=1 k=l t=1 

3- 3-3- a = 3-a and 3- 3-(3- a+3- b) =3-(a+ b), V'a.b eN. 

REMARK 8. In the case when (x,y) = 1 we obtain more simply the same result 
Because (x,y) = 1 ~ (g(x),g(y» = 1 ~ (g2(X),g2(y» = 1 so we have: 

~(g(x). g(y» = g(g(g(x)· g(y») = g(g(g(x»· g(g(y») = g(g2(X) ·i(y» = 
= g(g2(X».g(gl(y»= ~(x).~(y) =g(x)·g(y) = g(x·y). 

REMARK 9.lf (x,y) = I, then g(xyz) = g2(g(xy)·g(z» = i(g(x)g(y)g(z» and this 
property can be extended for a finite number of factors, therefore if 

n 2 n (XI,X2) = (X2,x3) = ... = (xn-2,Xn-l) = 1, then g(l1~) = g (I1g(Xi»' 
i=1 i=l 

PROPERTY 9. Thefunctton g has not fixed points X;lt 1. 

Proof. We must prove that the equation g(x) = x has not solutions x> 1. 
Let x = p~1 . p~2 ..... p~r n· > l,j = If be the prime factorization of x. Then II 12 I,. , ~j - , 

r 3-a _ 
g(x) = ITp' I: implies that C4. = 3- ~, \fj el,r which is not possible. I, 1 1 j=1 

REMARK 10. Thefunctton g has fixed points only in the case m= 2k, k EN-. These 
points are x = p~ . P~ ..... p~, where Pi ,j = 1,r are prime numbers. 11 '2 I, J 
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PROPERTY 10. If (~,y)= 1 and (-Y- X)= 1 then we have l (x,y) (x,y)' 
g«x,y» = (g(x),g(y», where we denote by (x.y) the greatest common divisor ofx andy. 

Proof. Because (_x_,y) = 1 and (-y_,x) = 1, we have (_x_,(X,y») = 1 and 
(x,y) (x,y) (x,y) 

( -y_,(X,y») = 1. then x and y have the following prime factorization: x = frp~h . IT d~11 
(x,y) h-l ~ t=1 . 

Then 
s~ n and v = IT .lk. ITdlZt. • Jk 1, , 

k=1 t=1 

nan 3-~ 
(x, y) = IT dl I, , therefore gC C x, y» = IT d1 1,. On the other hand 

t=1 I t=1 t 

r 3-a n 3-a s 3-/3 n 3-a. n 3-~ 
(g(x),gCY»=CITpi :h·IT~ 1',ITq· ;;,·ITcii ·')=IT~ 1, and the assertion 

h=1 h t=1 I k=1 A t=1 I t=1 I 

follows. 

REMARK 11. In the same conditions, g«x,y» = (g(x),g(y», Vx,y eN-. 

PROPERTY 11. If (_x ,y)= 1 and (x,y) ( 
y ) -- x -1 

(x,y) , - then we have: 

g([x,y]) = [g(x),g(y)], where (x,y) has the above significance and [x,y] is the least 
common multiple of x andy. 

Proof. We have the prime factorization of x and y used in the proof of the above 
property, therefore: 

r aSp n r 3-a s 3-P n 3--
g([x·YD=gCITpi,,'h. ITql.lk. ITdt') = ITpi" ill. ITq.it ... ITcii: ~ and 

h=1 k=1 t=1 h=1 k=1 t=1 

[g(x),g(y)] = IT Pi ih. IT cii ~', IT q. ik. IT cli. ~I = 
[ 

r 3-a n 3-- s 3-/3 n 3--] 

h=1 ~ t=1 I k=1 Jk t=1· 

r 3-a s 3-/3 n 3-­
= IT Pi 'll. ITq· I< ·ITd ~', 

h=1 Il k=1 A t=1 1. 

so we have g([x,y]) = [g(x),g(y)]. 

REMARK 12. In the same co~ditions, g([x,y]) = [g(x),g(y)l Vx,y eN-. 

CONSEQUENCE 4. If (_x_,y)= 1 and 
(x,y) 

=g«x,y»·g([x,yD for every x,y eN-. 
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Proof Because [x,y] = ~ we have [g(x),g(y)] = g(x)·g(y) and using the last two 
(x,y) (g(x),g(y» 

properties we have: 

g(x)·g(y) = (g(X),g(y»·[g(X),g(y)]= g«x,y»·g([x,y]). 

REMARK 13. In the same conditions. we also have g(x)·g(y) = g«x,y»·g([x,yD 
for every x, y E N-. 

PROPERlY 13. The sumatory numericalfunction of the function g is 

F(n) = N <Ii, +:- a" (1+p" +~)+hp" (<Ii) l 
where n= p~l .p~: ..... p~ is the prime factorization of n, and h :N ~ N is the 

1 2 t A" 

{

l for a=3k 

numericalfunction defined by l1p(a) = -p for a = 3k + l, where p is a given number. 

o for a=3k+2 

Proof. Because the sumatory fimction of g is defined as F( n) = L g( d) and because 
din 

k 
(p~l, TIp:") = 1 and g is a multiplicative fimction, we have: 

t=2 

F(n) = ( ~~~(dl»).( j ~~g~») and so on, making a finite number of steps we 
II, Pil ~ Pil ···Pit 

k a; 
obtain: F(n) = TIF(Pi i). 

j-l ) 

But it is easy to prove that: 

~ (1+p+p2)+1 for a= 3k 

a+2 2 --(1+p+p )-p for a=3k+1~ 
3 

a+\1+p+p2) for a=3k, kEN, foreveryprimep 
3 

Using the fimction ~, we can write F(pa) = 3-a(l+p+p2)+~(a), therefore we 
. 3 

have the demanded expresion of F(n). 

REMARK 14. The expresion of F(n}. where F is the sumatory function of g. is 

similary, but it is necessary to replace 
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a;. ~3-a a;. -rm-a 
J 3 " by J " (where a;. is now the remainder of the division of ai by 

m 1 1 

m-l 
m and the sum 1 + Pi. + pt by 2: p~) and to define an adapted function hp. 

, , ~o 1 

In the sequel we study some equations which involve the function g. 

1. Find the solutions of the equations x· g(x) = a, where X, a E N-. 
If a is not a perfect cube, then the above equation has not solutions. 

If a is a perfect cube, a = b3, b eN*, where b = p~l .p~2 ..... p~ is the prime 
11 12 lk 

factorization of b, then, taking into account of the definition of the function g, we have the 

solutions x = b3 
/ ~ i ; where ~ i...i can be every product 1/1' IrI!l' 2 ... rI!' where A,/J:., ···,fit 

I 2 --x 12k I 2 1. 

take an arbitrary value which belongs of the set {0,1, 2}. 

In the case when f31 = P2. = ... = 13k = 0 we find the special solution x = b 3, when 

R=R.= ... =R =1, the solution p~PI-lp~A-l ... p~Pk-l and when R=!3,.= ... =R =2, the 
1"1 1'l JJk II 12 1. 1"1. JJk 

solution p~I-2p~-2 ... p~k -2. 
11 l z ~ 

We find in this way 1 + 2C! + 22C! + ... +2c C; = 3c different solutions, where k is the 
number of the prime divisors ofb. 

2. Prove that the following equations have not natural solutions: 
xg(x) + yg(y) + zg(z) = 4 or xg(x)+yg(y)+ zg(z) = 5. Give a generalization. 

Because xg(x) = a3,yg(y) = b3,zg(z) = c3 and the equations a3 + b3 + c3 = 4 or 

a3 + b3 + c3 = 5 have not natural solutions, then the assertion holds. 

We can also say thet the equations (xg(x»n + (yg(y»n + (zg(z)l = 4 or 

(xg(x»n+ (yg(y»n+ (zg(z»n=5 have not natural solutions, because the equations 

a3n + b3n + c3n = 4 or a3n + b3n + c3n = 5 have not 

3. Find all solutions of the equation xg(x)-yg(y) = 999, 

Because xg(x) = a3 and yg(y) = b3 we must give the solutions of the equation 

a3 _ b3 = 999, whlich are (a=1O, b=1) and (a=I2,b=9). 

In the first case: a=10, b=1 we have xa(x)= 103 = 23 .53 

=>"0 E{103,i!.53,;i3.&,2 .53,;i3.5 ,i!.&,i!.5 ,2 .52,2 ·5 } 

and yb(y)=l => Yo = 1 so we have 9 different solutions (Xo,Yo)· 

In the second case: a=l2, b=9 we have xa(x) = 123 = 26 .33 

=> Xo e{ 26 .~,~ .33,26 .32,2" .33,26 .3 ,25.32,24.32,25.3 ,24 .3 } 

and yb(y)=g3 = 39 => Yo e{39 ,jI,37
} so we have another 9·3= 27 different solutions 

(Xo,yo)· 

4. It is easy to observe that the equation g(x)=1 has an infinite number of solutions: all 
perfect cube numbers. 
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s. Find tlui solutions oft~ of the equation g(x)+ g(y) + g(z) = g(x)g(y)g(z). 
The same problem when the function is g. 
It is easy to prove that the solutions are, in the first case, the permutations of the sets 

{u3,4~,9t3}, where U, v,t EN·, and in the second case {um,2~lvM,3~ltm}, U, v,t EN-. 

Using the same ideea of [1 J, it is easy to find the solutions of the following eqU3tions 
which involve the function g: 

a) g(x) = kg(y), k EN-, k > 1 

b) Ag(x)+ Bg(y)+ Cg(z) = 0, A,B,C EZ 
c) Ag(x) + Bg(y) = C, A,B,C EZ·, and to find also the solutions of the above equations 

when we replace the function g by g . 

[1 J Ion BaIacenoiu, Marcela Popescu, Vasile Seleacu, About the Smarandache 
square's complementary function, Smarandache Function JownaI, Vo1.6, No.1, June 1995. 

[2J F. Smarandache, Only problems, not solutions!, Xiquan Publishing House, 
Phoenix-Chicago, 1990,1991,1993. 

Current Address: University of Craiova, Department of Mathematics, 13, 
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Some Considerations Concerning the Sumatory Function 
Associated to Smarandache Function 

by 
M. Andrei,C. Dumitrescu,E. lUdescu, N. lUdescu 

The Smarandache Function [4] ia a numerical function S:N° ~ N° defined by 

Sen) = min{ "n,m I divisible by n} . 

From the definition it results that if 
Pi'1 r, (I) n= PI P2 .•• p, 

is the decomposition of n into primes, then 

Sen) = max{S(p; )Ii = 1.2, ... ,r} (2) 

It is said that for every function I it can be attashed the sumatory function 

F(n) = LI(d) (3) 
din 

If I is the Smarandache function and n = pa , then 
a a 

r:(pa) = LS(pJ) = LSAj) 
)-0 }-o 

In [2] it is proved that 

S(pJ) = (p-I)j +G[p)(j) 

where 
'J 

j= Lk(aj(p) 
i-I 

and 

" 
G[p)(j) = ~k( 

is the sum of the digits of the integer j, written in the generalised scale 

[p] :al(p),aip),····,a/c(p), ... 

with 

For example 

and 

In [3] it is proved that 

pn -I 
an(p)=-- ,n=I.2, ... 

p-I 

p= p·al(p); 

pP = (p-I).ap(p)+ I.a\(p); 

p' = (p':"'I)·a,(p)+ I; 

G[p)(pP) = p; 

S(pP)= p2; S(ppp) = (p-l)pP + p . 

a a(a+l) ~ () 
r:(p ) = (p-I) 2 + ~G[p) j 

)-1 
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In the following we give an algorithm to calculate the sumatory function, associated to the 
Smarandache function: 

l. Calculating the generalised scale [p] : at (p ),a2(p), .... ,a,,(p), .. . 

2. Calculating the expresion of a in the scale [p]. Let alp) = ksks_t ... kt . 

3. For i = I,2, ... ,s 

3.1. If k,;c 0 
then 

else 

3.l.l. v; =a-a;(p)+l 

3.l.2. z, = (ksks_t ... k;+t) 
ltZQ,(p) 

3.l.4. b = ksks_t ... k;+t -lpOO ... O 
3.l.5. V; =b-a;(p)+1 

3.l.6. z; = (ksks_t ..• k;) 
-,(p) 

A Pascal program has been designed to the calculus of F.(pQ) : 

uses dos,crt; 
type tablou=array[ 1 .. 1 00] of real; 
var a,.k.amare,bmare,niu,z,alfaa.betaa,ro,r,s:tabloU; 

alfa,p,ik.amax,beta,suma,fsuma,u:real; 
i,dim,maxj :longint; 
hour ,min,sec,sec 1 OO:word; 
{***************************************************** } 

{Calc. scale p right} 
procedure bazapd(var b:tablou;var p:real;var a:real; var dim:longint); 
var i:longint; 
begin 

for i:=l to 100 do 
bi]:=O; 
b[l]:=l; 
i:=O; 



repeat 
i:=i+l; 

b[i]:=b[i-l ].p+ 1; 
until b[i]>a; 

dim:=i; 
end; 

{ ..................................................... } 
{write alfa in the scale p right} 
procedure nrbazapd(var a:tablou; var p:real; 
var alfa:real; var k:tablou; var max:longint); 
var m,i:longint; 
d,r,prod:real; 
begin 
for i:=l to 100 do 

k[i]:=O; 
d:=alfa; 
max:=trunc(ln«p-l)·d+l)lln(p»; 
repeat 

m:=trunc(ln«p-l)·d+ 1 )Iln(p»; 
k[m]:=trunc(dla[m]); 
r:=d-a[m]·k[m]; 
d:=r; 

until r<p; 
ifr<>O then 
k[l]:=r; 

end; 
{ ........................................... } 
{calc. z for given i } 

procedure calcz(var k:tablou;var a:tablou; 
var i:longint;var u:real; var z:tablou; var p:real); 
var j,il ,ind:longint; 
prod:real; 
begin 

z[i]:=O; 
ind:=I; 

for j:=i+l to max do 
begin 

ifk[j]<>O then 
begin 

prod:=I; 
if ind> 1 then 

begin 
for il :=1 to ind-l do 

prod:=prod·p; { •••• } 
prod:=prod·u+a[ind-l ]; 

end 
else 

prod:=u; 
z[i] :=z[i]+k[j] .prod; 
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end; 
ind:=ind+ I; 

end; 
end; 
{ ................................................... } 
begin 
clrscr; 
write(' give p='); 
readln(p); 
write(' give alfa='); 
readln( alfa); 
gettime(hour,min,sec,sec 1 00); 
writeln(' Timp Start:',hour,':',min,':',sec,':',seclOO); 
bazapd(a,p,alfa,dim); 
nrbazapd( a,p,alfa,k,max); 
for i:= 1 to max do 

begin 
if k[i] <>0 then 

begin 
niu[i] :=alfa-a[i]+ I; 
u:=a[i]; 
calcz(k,a,i,u,z,p ); 
alfaa[i] :=niu[i]-z[i]; 

end 
else 
begin 
for j:=1 to max do 
betaa[j] :=k[j]; 
betaa[i]:=p; 
betaa[i+ I] :=betaa[i+ 1 ]-1 ; 
for j:=l to i-I do 
betaa[j] :=0; 
{Write beta in the scale 10} 
beta:=O; 
for j:=1 to max do 

beta:=beta+betaafj] *afj]; 
niu[i] :=beta-a[i]+ I; 
u:=a[i]; 
calcz(betaa,a,i,u,z,p ); 
alfaa[i]:=niu[i]-z[i]; 
end; 
amare[i] :=int(alfaa[i]/(a[i+ 1 ]-a[i])); 
r[i] :=alfaa[i]-amare[i]·( a[i+ 1 ]-a[i]); 
bmare[i] :=int(r[i]/a[i]); 
ro[i] :=r[i]-bmare[i]· a[i]; 
s[i]:=amare[i]·a[i]·(p·(P-l )/2)+amare[i]·p; 
sri] :=s[i]+a[i] ·(bmare[i]·(bmare[i]+ 1 )/2); 
sri] :=s[i]+ro[i] ·(bmare[i]+ I); 

end; 
suma:=O; 
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for i:=l to max do 
suma:=suma+s[i]; 

fsuma:=(p-l )* «alfa* (alfa+ 1 ))I2)+suma; 
writeln(, fsuma=',fsuma); 
gettime(hour,min.sec,sec 1 00); 
writeln(, Timp Stop:',hour,':',min.':',sec,':',secIOO); 
end, 

We applied the algoritm for p = 3 and a = 300 we obtain 
TIMES START: 10:34:1:56 
TIMES STOP: 10:34:1:57 

We applied the formulas [4] for p = 3 and a = 300 we obtain 
TIMES START: 10:33:31:2 
TIMES STOP: 10:33:31:95 

A consequence of this work is that the proposed algoritm is faster then formula [4] , 

From the Legendre formula it results that [1] 

SpW = p(/ - ipUll with 0,;; Wl';;[ j~ I]. 
and 

consequently 

F(PQ)= pa(a+l) ~, ( ') 
s 2 P~'p J 

In [1] it is showed that 

In particular, 

and 

If p~ a, then 

and 

For example 

In particular, 

j-a[ J(j) 
i (j)= p 
p p 

j=j,a\(p), a[pJ(j)=j, (j=I,2, ...• a), S(pQ)=pa 

~ . , a(a+l) 
"""a[pJ{j) = 2 ; 
1-0 

Q pa(a+l) 
F:(P)= 2 

F:(1 e)= s(1)+S(II)+S(11 2 )+S(113 )= 66 or 

F:(11 3 )= 11'~.4 66, 
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F.(pP) = p2(~+ I) (11) 

If P 5:. a , then a = pQ + R with 0 5:. R 5:. P , and 

tip(j)= t{[~]_[crp(j)]}~ 
1-0 1-0 P P 

tip(j)= pQ(Q-I) +Q(R+I)- t[crp(j)], 
1-0 2 l-P P 

consequently, 

F.(p0) = pa(a+ I) p2Q(Q_I) _ pQ(R+ 1)+ p t[cr[P](P)] (12) 
2 2 1-0 P 

In particular, for p = a then Q = I , R = 0 and 

F.(pP)= p2(;+1 (13) 

For example, 

F.(33 )= 18; F.(5 s)= 75; 

2(2P + 1)2 (2P-2 + I) 2P + I 
F(n")= for n=-- with 3<p5:.31 and p prime. , 27' 3 ' 

If n = pO qb with p < q and pO < q , then 

° ° b 

F.(p0qb)= IS(d) = IIS(p'ql)= (a+l)IS(ql)= (a+ 1)F.(qb) 
dIp' q' ,.0 laO 1-0 

Then: 
I. If q ~ b, 

F D b _ qb(a+ I)(b+ I) 
,(p q )- 2 

II. If q 5:. b , 

F.(pDqb) = (a+I~b(b+l) _ (a+l)l 2Q(Q-l) q(a+I)Q(R+I)+ 

q(a + 1)±[cr[q]U)] 
l-q q 

where b = qQ + R , with 05:. R 5:. q . 

If n = po q , then 
D D 

F.(pDq) = IS(p')+ IS(qpi) . 

For p>q, then p' >q and S(qpi)=S(p') with i~1 consequently, 

F.(pOq) = 2F.(PD)+ S(q)-l 

For p < q, there exists x < a with pZ-1 < q < pZ and 

S(qp') = {S(q), i = O,l, ... ,x-1 

S(P'), i=x, ....• a 

consequently, 
z-I ° 

F.(P0q) = IS(pi)+xS(q)+2IS(pi) 
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or 
Q 

F:(pQ q) = F:(pX-I)+xS(q)+(a+x)(a-x + l)(p-l)+ 2Lcr[pJ(j) (17) 

For example, if p ~ a, then 

Fs(pQq) = F:(pX-I)+xS(q)+ p(x+a)(a-x+ I) 

If n = pQqk with p> q, then 
Q Q Q 

F:(pQq2) = LS(pi)+ LS(qpi)+ LS(q2p '). 
isO ... 0 1.0 

JSX 

But S(qkp')=S(p') for i~k,because max.(S(p'),S(qk))=S(p') for i~kconsequently, 
F:(pQq2) = F:(pQq) + F:(pQ)+ S(q2)+ S(q2 p)-p-I = 

In short 

Hence 

= 3F:(pQ)+S(q)+S(q2)+S(q2 p)- p-2 

F:(pQq) = 2F:(pQ)+S(q)-1 

F:(pQq2) = F:(pQq)+ F:(pQ)+ S(q2 )+S(q2 p)-p-I 

F:(pQq3) = F:(pQq2)+ F:(pQ)+ S(q3)+S(q3 p)+ S(q3 p2)_ P - 2p-1 

F:(pQqle) = F:(pQqle-I)+ F:(pQ)+S(qle)+S(qle p)+S(qle p2)+ 

+ ... +S(qle ple-I)_ p-2p-... -(k-l)p-1 

Ie Ie Ie 

F:(pQqle) = (k+l)F:(pQ)+ Ls(q')+ L S(q'p)+ L S(q'p2)+ 
,.1 ... 2 ,.3 
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SOME ELEMENTARY ALGEBRAIC CONSIDERATIONS INSPIRED 
BY SMARANDACHE'S FUNCTION (II) 

E. R.A.DESCU, N. R.A.DESCU AND C. DUMITRESCU 

In this paper we continue the algebraic consideration begun in [2]. As it was sun, 
two of the proprieties of Smarandache's function are hold: 

(1) 5 is a surjective function; 
(2) 5([m,n]) = max {5(m),5(n)}, where [m,n] is the smallest common multiple 

of m and n. 
That is on N there are considered both of the divisibility order "~d" having the 

known properties and the total order with the usual order :5 with all its properties. 
N has also the algebric usual operations "+" and ".". For instance: 

a :5 b <=> (3) u E N so that b = a + u. 

Here we can stand out: 

: the universal algebra (N*, 0), the set of operations is 0 = {V d, 'Po} where 
Vd : (N*)2 -+ N* is given by m Vd n = [m, n], and 'Po : (N*)o -+ N* the 
null operation that fixes I-unique particular element with the role of neutral 
element for "V d" -that means 'Po ({0}) = 1 and 1 = eVd ; 

: the universal algebra (N*, 0'), the set of operations is 0' = {V, tPo} where 
V : N2 -+ N is given by x V y = sup {x, y} and tPo : N° -+ N a null operation 
with tPo ({0}) = 0 the unique particular element with the role of neutral 
element for V, so 0 = ev. 

We observe that the universal algebras (N*, 0) and (N*, 0') are of the same type: 

_(Vd 'Po)_(V tPo) 
2 0 - 2 0 

and with the similarit y (bijective) Va<=> V and 'Po <=> tPo, Smarandache's function 
5: N* -+ N is a morphism surjective between them 

5(x Va y) - 5(x) V 5(y), \lx,y E N* from (2) and 

5(cpo({0}» = tPo({0}) <=> 5(1) = o. 
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Problem 3. If S : N* - N is Smarandache's function defined as we know by 

S(n) = m <===* m = min {k : n divides k!} 

and I is a some set, then there exists an unique s : (N*)I _ NI a surjective morphisme 
between the universal algebras ((W)I,O) and (NI, 0') so that PieS = SOPi, for i E I, 
where Pj : NI _ N defined by a = {adiEI E NI, Pj (a) = aj, for each j E I, .. 

Pj are the canonical projections, morphismes between (NI, 0') and (N, O')-universal 

algebras of the same kind and pj : (N-)I - N- analogously between ((N-)I,O) and 

(N*, 0) . We shall go over the following three steps in order to justify the assumption: 

Theorem 0.1. Let by (N, 0) is an universal algebra more complexe with 

of the kind T : 0 - N given by 

where V d and 'Po are defined as above and Ad : N2 - N, for each x, yEN, X Ad Y = 
(x,y) where (x,y) is the biggest common divisor of x and y and ~o : N° - N is 
the null operation that fixes O-an unique particular element having the role of the 
neutral element for "Ad" i.e. ~0({0}) = 0 so 0 = eAd and I a set. Then (w,fi) with 

fi = {WI, W2, Wo, wo} becomes an universal algebra of the same kind as (N, 0) and the 
canonical projections become surjective morphismes between (NI, fi) and (N, 0), an 
universal algebra that satisfies the following property of universality: 
(U) : for every (A, 0) with 0 = {T, ..L, 0'0,0'0} an universal algebra of the same kind 

_ (T ..L 0'0 0'0) 
T- 2 2 0 0 

and Ui : A - N, for each i E I, morphismes between (A,O) and (N,O), exists an 

unique u : A - NI morphism between the universal algebras (A, 0) and (N1 , fi) 
so that Pj ° U = Uj, for each j E I, where Pj : NI - N with each a = {ai}iEI E 
NI, Pi (a) = aj, for each j E I are the canonical projections morphismes between 
(NI,fi) and (N, 0). 
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Proof. Indeed (NI, fi) with fi = {Wl' W2, Wo, WO} becomes an universal algebra because 
we can well define: 

Wl (NI)2 _ NI by each a = {adiEI' b = {bdiEI E N;Wl (a, b) = {as Vd bdiEI E NI 

and 

W2 (NI)2 _ NI by W2 (a, b) = {ai Ad bil.EI N
I 

and also 

Wo: (NI)0-NIwithwo({0})={ei=1}iEIENI 

an unique particular elemen t (the family with all the comp onen ts equal with 1) fixed 
by Wo and having the role of neutral for the operation Wl noted with e"'l and then 
Wo : (NI)O _ NI with Wo ({0}) = {ei = Ol.EI an unique particular element fixed by 
Wo but hawing the role of neutral for the operation W2 noted e"'2 (the verifies are 
imediate). 

The canonical projections Pi : NI - N, defined as above, become morphismes 
between (NI, fi) and (N, n) . Indeed the two universal algebras are of the same kind 

( 
Wl W2 Wo wo) = ( V d Ad 'Po 'Po) 
2200 2200 

and with the similairi ty (bijective) Wl o¢=::} V d; W2 o¢=::} Ad; Wo o¢=::} 'Po; Wo o¢=::} 'Po 
we observe first that for each a, bE NI,Pi (WI (a, b)) = pj(a) Vd pj(b), for each j E I 
because a = {adiEI,b = {bi}iEI,Pi(wda,b)) = Pi ({aiVdbi}iEI) = aj Vd bi and 

Pi(a) Vd Pi(b) = pj({ai};EI) Vd Pj ({bi}iEI) = ai Vd bj and then pi(wo({0})) = 

'Po ( {0}) o¢=::} Pi ({ ei = I} iEI) = 1 o¢=::} Pi( e",J = ev,,; analogously we prove that 
Pi, for each j E I keeps the operations W2 and Wo, too. So, it was built the universal 
algebra (N I, fi) with fi = {Wll W2, Wo, wo} of the kind T described above. 

We prove the property of universality (U) . 
We observe for this purpose that the Ui morphismes for each i E I, presumes 

the coditions: for each X,Y E S,ui(xTy) = Ui(X) Vd Ui(Y);Ui(X.Ly) = Ui(X) Ad 
Ui(Y); Ui(O"O ({0})) = 'Po({0}) o¢=::} ui(eT) = ev" = 1 and ui(0'0({0})) = 'Po({0}) o¢=::} 

ui(e.d = e"" = 0 which show also the similarity (bijective) between n and n. We 
also observe that (5, n) and (N I , fi) are of the same kind and there is a similarity 

(bijective) between n and fi given by T o¢=::} wl;.L o¢=::} W2; 0"0 o¢=::} Wo; 0'0 o¢=::} woo 
We define the corespondance u: A - NI by u(x) = {Ui(x)}iEI. 
U is the function: 

• for each x E A, (3)u;(x) E N for each i E I (ui-functions) so (3){Ui(X)}iEI 
that can be imagines for x; 
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• Xl = X2 ==> u(xd = U (X2) because Xl = X2 and ui-functions lead to ui(xd = 
Ui(X2) for each i E I==> {Ui(Xl)};EI = {Ui(X2)}iEI ==> U(Xl) = U(X2). 

U is a morphisme: for each X, yEA, U (xTy) = {u;(xTy)} iEI = {Ui(X) V d Ui(y)}iEI = 
WI ({Ui(X)}iEI ' {Ui(y)}iEI) = Wl(U(X),u(y)). Then u(0"0({0})) = wo({0}) {:::::} 
u(eT) = e"'l because for each {ai}iEI E NI,Wl( {adiEI' {Ui (eT )}iEI) = {ai Vd ui(eT )}iEI = 
{ ai V d I} iEI = {ai} iEI . 

Analogously we prove that U keeps the operations: .1. and 0'0. 

Besides the condition Pj 0 U = Uj, for each j E I is verified (by the definition: for 
each xES, (Pi 0 u)(x) = pj(u(x)) = pj( {Ui(X)}iEI) = Uj(x)). 

For the singleness of U we consider U and u, two morphismes so that Pj 0 U = Uj 
(1) and Pi 0 u = ui (2), for every j E I. Then for every X E A, if U (x) = {Ui(X )}iEI 
and u(x) = {Zi}iEI we can see that Yi = ui(x) = (pj 0 u)(x) = Pi( {Zi};EI) = Zj, for 
every j E I i.e. u(x) = u(x), for every X E A {:::::} U = U. 

Consequence. Particularly, taking A = NI and Ui = Pi we obtain: the morphisme 
U : NI -t W verifies the condition Pi 0 U = Pj, for every j E I, if and only if, U = IN/. 

The property of universality establishes the universal algebra (NI, 0) until an iso­
morphisme as it results from: 

Theorem 0.2. If (P, n) is an universal algebra of the same kind as (N, n) and]l; : 
P -t N, i E I a family of morphismes between (P, n) and (N, n) so that for every 

universal algebra (A, n) and every morphisme Ui : A -t N, for every i E I between 

(A, n) and (N, n) it exists an unique morphisme U : A -t P with ~ 0 U = Ui, for 

every i E I, then it exists an unique isomorphisme f : P -t NI with Pi 0 f = ]1;, for 
every i E I. 

Proof. From the property of universality of (NI,O) it results an unique f : P -t NI 

so that for every i E I, Pi 0 f = ]I; with f morphisme between (P, n) and (NI, 0) . 
Applying now the same property of universality to (P, n) ==>exists an unique 7 : 
NI -t P so that ]I; 07= Pi, for every i E I with 7 morphisme between (NI, 0) and 

(P, n). Then ~ 07= Pj {:::::} Pi 0 (f 07) = Pi, using the last consequence, we get 

f 07= IN]. Analogously, we prove that f 07= Ip from where 7 = f- l and the 
morphisme f becomes isomorphisme. 

We could emphasize other properties (a family of finite support or the case I -filter) 
but we remain at these which are strictly necessary to prove the proposed assertion 
(Problem 3). 

b) Firstly it was built (NI, 0) being an universal algebra more complexe (with 
four operations). We try now a similar construction starting from (N, n*) with n* = 
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(V, 1\, tPo) with "V" and "tPo" defined as above and 1\ : N2 - N with x 1\ y = inf {x, y} 
for every x, YEN .• 

Theorem 0.3. Let by (N, D*) the above universal algebra and I a set. Then: 
(i) (NI,O) with ° = {01,02,00} becomes an universal algebra of the same kind r as 

(N, [2*) so r : ° - N is 

(ii) For every j E I the canonical projection Pi : NI - N defined by every a = 

{adiEI E NI,pj(a) = aj is a surjective morphisme between (NI,O) and (N,D*) 

and ker Pi = {a E NI : a = {ai} iEI and aj = O} where by definition we have ker Pj = 

{a E NI : Pj (a) = ev } ; 

(iii) For every j E I the canonical injection qj : N - NI for every x E N, qj( x) = 
{ai} if where ai = 0 if i =1= j and aj = x is an injective morphisme between (N, D*) 

and ~NI,O) and qj(N) = {{adiEI: ai = O,vi E 1- {j}}; 
(iv) If j,k E I then: 

. _ { V-the null morphisme for j =1= k, 
p; 0 qk - IN-the identical morphisme for j = k. 

Proof. (i) We well define the operations 01 : (NI)2 _ NI by Va = {a;}iEI E NI and 

b = {bihEI E NI,01 (a, b) = {ai V b;}iEI; O2 : (NIr - NI by O2 (a, b) = {ai 1\ bihEI 

and 00 : (NIt - NI by 00 ({0}) = {ei = O} iEI an unique particular element fixed by 
00 , but with the role of neutral element for 01 and noted e81 (the verifications are 
immediate). 

(ii) The canonical projections are proved to be morphismes (see the step a)), they 
keep all the operations and 

kerpj = {a = {adiEI E NI : pj(a) = ev} = {a E NI : aj = O}. 

(iii) For every x,y E N,q;(x V y) = {e;}iEI where e; = 0 for every i =1= j and 
Cj = x V y and 

01 ({ ai = 0, vi:f:. j }., { bi = 0, vi:f:. j }) = { e; = 0 , Vi :f:. j } 
aj = x bj = y Cj = x V y 

i.e. q;(x V y) = 01 (qj (x), qj (y)) with j E I, therefore qj keeps the operation "V" 

for every j E I. Then qj ( tP ( {0 }) = 00 ( {0}) <==> qj (ev) = {ei = O} iEI <==> qj (0) = 
{ei = OLEI = e81 because 'Va = {ai}iEI E NI,01 (qj (0) ,a) = 01 ({ei = O}iEI' {ai}iEI) = 
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{ej V aj}iEI = {aj}iEI = a enough for qj(O) = eo! because ()I is obviously comutative 
-this observation refers to all the similar situations met before. Analogously we also 
prove that ()2 is kept by qj and this one for every j E I. 

(iv) For every x E N, (Pioqk)(X) = pj(qA:(x)) = Pi ({ :::~ ,'Vi#k}) = 

O=:;'Pjoqk=OfOrj#kand(pjOqj)(X)=Pi(qi(X))=Pi({ :::~ ,'Vi#j}) = 

x =:;. Pj 0 qk = IN for j = k .• 
The universal algebra (NI, ()) satisfies the following property of universality: 

Theorem 0.4. For every (A, 0) with 0 = {T, 1., ()o} an universal algebra of the 

some kind T : () - N 

(
T .1. ()o) 

T = 2 2 0 

as (NI, ()) and Ui : A - N for every i E I morphismes between (A, 0) and (N, n*), 

exists an unique U : A - NI morphisme between the universal algebras (A, 0) and 

(NI,()) so that Pj 0 U = Uj, for every j E I with Pj : NI - N,'Va = {ai}iEI E 

NI , Pi (a) = aj the canonical projections morphismes between (NI, ()) and (N, n*). 

Proof. The proof repeats the other one from the Theorem 1, step a) .• 

The property of universality establishes the universal algebra (N I , ()) until an iso­
morphisme, which we can state by: 

If (P, n*) it is an universal algebra of the same kind as (N, n*) and 11; : P - N 
for every i E I a family of morphismes between (P, n*) and (N, n*) so that for every 

universal algebra (A, 0) and every morphismes Ui : A _ N, 'Vi E I between (A, e) 
and (N, n*) exists an unique morphisme U : A - P with 11; 0 U = Ui, for every i E I 
then it exists an unique isomorphisme f : P - NI with Pi 0 f = 11;, for every i E I. 

c) This third step contains the proof of the stated proposition (Problem 3). 
As (W, n) with n = (Vd,Io} is an universal algebra, in accordance with step a) it 

exists an universal algebra ((N*)I ,n) with n = {WbWO} defined by: 

WI ((W)I)2 _ (N*/ by every a = {ai}iEI and b = {bi}iEI E (N*)I, 

WI (a, b) = {aiVdbdiEI 

75 



SMARANDACHE'S FUNCTION 

and 

the canonical projections being certainly morphismes between ((N*)I ,0) and (N-, 0). 

As (N, 0') with 0' = {V, 'ITo} is an universal algebra, in accordance with step b) 

it exists an universal algebra (NI, 0') with 0' = {th, Oo} defined by: 

01 : (NI)2 _ NI by every a = {adiEI' b = {bdiEI E NI, 01 (a, b) = {aiVdbdiEI 

and 

00 : (NI)O _ NI by 00 ({0}) = {ei = O}iEI = e81 

The universal algebras ((N*)I, 0) and (NI, 0') are of the same kind 

01 00 = 2 0 

We use the property of universality for universal algebra (W, n'): an universal al­

gebra (A,O) can be ((N*)I, 0) because they are the same kind; the morphismes 

Ui : A - N from the assumption will be ;i : (N-)I - N- by every a = {ai}iEI E 

(N-)I ,S-i (a) = S-i ({ ai} iEI) = S (ai) <;::::=? ;i = S 0 Pi for every j E I where S : N* - N 

is Smarandache's function and Pi : (N-)I - N* the canonical projections, morphismes 

between ((N-)I ,n) and (N*,O). As S is a morphisme berween (N-,n) and (N,O'), S-i 
are morphismes (as a composition of morphismes) for every j E I. The assumptions 
of the property of universality being provided ~ exists an unique S : (N*)I _ NI 

morphism between ((N-l , 0) and (NI, 0) so that Pi 0 S = ;i <;::::=? Pi 0 s = So Ph for 
every j E I. We finish the proof noticing that s is also surjection: Pi 0 S surjection 
(as a composition of surjections) ~ S surjection. 

Remark: The proof of the step 3 can be done directly. As the universal algebras 
from the statement are built, we can define a correspondence S : (N-)I _ (N-)I by 

every a = {adiEI E (N-)I ,s(a) = {S(adhEI' which is a function, then morphisme 

between the universal algebra of the same kind ((N*)I,O) and (NI,n') and is also 
surjective, the required conditions being satisfied evidently. 

The stated Problem finds a prolongation S of the Smarandache function S to more 
comlexe sets (for I = {I} ~ S = S). The properties of the function s for the 
limitation to N- could bring new properties for the Smarandache function. 
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A LINEAR COMBINATION WIm 
SMARANDACHE FUNCTION 
TO OBTAIN THE IDENTITY' 

by 
M. Andrei, I. BiIliIcenoiu, C.Dumitrescu, E. RiIdescu, N. RiIdescu, V.Seleacu 

In this paper we consider a numerical fimction i p: N* ~ N (p is an arbittary 

prime number) associated with a particular Smarandache Function Sp: N* ~ N 

such that (1/ p)Sp (a)+ ip (a) = a. 

1. INTRODUCTION. In [7] is defined a numerical function S:N* ~ N, S(n)is the 

smallest integer such that S( n)! is divisible by n. This function may be extended to all 
integers by defining S( -n) = S( n) . 

If a and b are relatively prime then S( a . b) = max{ S( a), S(b )}, and if [a, b] is the last 

common multiple of a and b then S([ a . b]) = max{ S( a), S(b )} . 

Suppose that n = p;'p;' .... p;' is the factorization ofn into primes. In this case, 

S(n) = max{S(p:i Ii = 1, ... , r} (1) 

Let an (p ) = (p n -1) / (p -1) and [P] be the generalized numerical scale generated by 

(an (p ») neN : 

. [p]: a.\p),a2 (p),· ... ,an(p),··· 

By (p) we shall note the standard scale induced by the net b n (p) = pn : 

(p): I,p,p2 ,p3 , ... , pn , ... 

In [2] it is proved that 

(2) 

That is the value of S(p') is obtained multiplying by p the number obtained writing the 

exponent a in the generalized scale [P] and "reading" it in the standard scale (p). 
Let us observe that the calculus in the generalized scale [P] is different from the calculus in 
the standard scale (P), because 

an+J(p)=pan(p)+1 and bn+J(p)=pbn(p) (3) 
We have also 

am (p)~ a <=> (pm -1)/ (p-l)~ a <=> pm ~ (p-l)·a+ 1 <=> m ~ logp(p- 1). a+ 1) 

so if 

alp] = vtat (p)+vt_Jat _ J (p)+ ... .+vJa)(p) = VtVt_J···v)[p] 

is the expression of a in the scale [P] then t is the integer part of logp (p -1)· a + 1) 

t = [logp (p -1)· a+ 1)] 

and the digit v t is obtained from a = v tat (p) + rt_J . 
In [1] it is proved that 

I This paper has been presented at 26'" AImual Iranian Math. Conference 28-31 March 1995 and is published in 
the Proceedings of Conference (437-439). 



S(p') = (p-I)· a+O'[p)(a) 

where O'[p)(a) = VI +v2 + ... +v". 

A Legendre formula asert that 

where Ep(a)= I,[~]. 
j;!I p 

We have also that as]) 

and ([1]) Ep(a)=([;] J 
(p) [pI 

a!= ITpiE,;(a) 

p;Sa 
p;pnm 

(4) 

(5) 

In [I] is given also the following relation between the function Ep and the Smarandache 

function 

s( a) (P_I)2( ) p-I 
P = Ep(a)+a +--O'[p)(a)+O'[p)(a) 

p p 
There exist a great number of problems concerning the Smarandache function. We present 
some of these problem. 

P. Gronas find «3]) the solution of the diophantine equation Fs (n) = n, where 

Fs(n)= I,S(d). The solution are n=9, n=16 orn=24, orn=2p, where p is a prime number. 
cIIn 

T. Yau «8]) find the triplets which verifies the Fibonacci relationship 

S(n) = S(n + 1)+S(n +2). 
Checking the first 1200 numbers, he find just two triplets which verifies this relationship: 
(9,10,11) and (119,120,121). He can't find theoretical proof. 
The following conjecture that: "the equation S(x) = S(x+ 1), has no solution", was not 
completely solved until now. 

2. The Function ip(a). In this section we shall note S(p')= Sp(a). From the 

Legendre formula it results a 4]) that 

S,(.)=P(.-i,(.») with O';i,(.):>[ ';1] . (6) 
That is we have 

(7) 

and so for each function Sp there exists a function ~ such that we have the linear combination 
(7) to obtain the identity. 
In the following we keep out some formulae for the calculus of ~ . We shall obtain a duality 
relation between ~ and ~ . 

L k k-I et a(p) = Uk Uk_I ... ·. UI Uo = UkP + Uk_1P + ..... +UtP + Uo • 

Then 
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a = (p-l{ Uk pk -1 + Uk_I pk-I -1 + .... +ul P-l)+(Uk +Uk_1+ ... +U1)+u o = 
'\. p-l p-l p-l 

(p-J[;] J + O'(p) (a) = (p-l)Ep(a) +O'(p)(a) (8) 
\ (p) [p] 

From (4) it results 

So, 

Sp (a) = (p -1)2Ep (a)+ (p-lp(p)(a)+O'[p](a) 

From (4) and (7) it results 

. a-O'[p](a) 
Ip(a):--~­

p 
and it is easy to observe a complementary with the equality (5). 
Combining (5) and (11) it results 

. (p -I)Ep (a)+O'(p)(a)-O'[p] 
Ip(a) = ~-~~-~~~~ 

p 
From 

(9) 

(10) 

(11) 

(12) 

( I-I 1-2 1) (1-2 1-3 1) a=vlvl_l",vl[p]=VI P +p + ......... +p+ + VI_I P +p + ......... +p+ + 

+ ..... .+v2(P+ I)+VI 
it results that 

( I-I 1-2 ) (1-2 I-I 1) (1-3 1-4 1)+ a= VIP +vl_IP + ...... +V1P+VI +VI P +p + .... + + VI_I P +p + ... + .... .+ 

v3(p+ I)+v2 = (a[p]) +[~]_[.......t.O'[~p](_a)] 
(p) p p 

because 

[
a] [ (1-2 1-3 1) VI (1-3 1-4 ) VI_1 P = VI P +p + ... +p+ +p+VI_1 P +p + .... +p+l +-p+ .... + 

V V v, 
+v3(p+I)+-3 +V 2+-2 +_1 J=VI(pl-2+ pl-3+ ... +p + I)+ 

P p p 

( 1-3 1-4 1" (1) [O'[p](a)] + VI_l p +p + ... +p+ rr",+v3 p+ +V2 + P 

we have [n+x]=n+[x]. 
Then 

a = (a ) +[~]_[O'[p](a)] 
[p] (p) p p (13) 

or 

It results that 
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From (11) and (14) we obtain 

i,(a)=[;]-[ C1"t)] 
It is know that there exists m,n e N such that the relation 

[m;n H:]-[;] 
is not verifies. 

m-n 
But if --e N then the relation (16) is satisfied. 

p 
From (11) and (15) it results 

This equality results also by the fact that ip(a)e N. 

From (2) and (11) or from (13) and (15) it results that 

ip (a) = a - (CirP])(p) 

From the condition on i, in (6) it results that .<1 =[ a; I]_i,(a)" o. 

To calculate the difference .<1 = [ a; I] -i, ( a) we observe that 
.<1=[ a;I]_i,(a)=[ a;I]-[:H C1,,~(a)] 

For ae[kp+l,kp+p-Ij we have [a;I]=[;] so 
.<1=[ a;I]_i,(a)=[ C1,,~(a)] 

If a=kp then [a;l]=[kpp-I]+_ ~]=k-I and [:]=k. 
So, (18) becomes 

.<1 = [ a; 1]_ i,(a)= [C1,,~(a)]_1 
Analogously, if a = k:p + p , we have 

[a;l]=[ p(k+ 1)-1 +[ k+ 1- ~ ]= k and [:]= k+1 
so, (18) has the form. (20). 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

For any number a, for which L1 is given by (19) or by (20), we deduce that L1 is maximum 
when O"[p](a) is maximum, so when 

aM = (p- I)(p- I) ... (p-l)p (21) 
, .. ' 1_ [pI 
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That is 

aM = (p -I)at(p)+(p-I)at-l(p)+····+(p -1)a2(p)+ p = 

(
pt_ 1 pt-I_l p2_ 1) 

=(p-I) --+ + ... +-- +p= 
p-I p-l p-I 

= (pt + pt-I+ ... +p2 + p)-(t-I) = pat(p)-(t-l) 

It results that aM is not multiple of p if and only if t -I is not a multiple of p. 
In this case u[pj(a)= (t-I)(p-I)+ p = pt-t+ 1 and 

,1 =[ ar'~(')] +_ t; I]:t_[ t; I]. 

So i'('M)~[ 'Mp-I]_t or i'('M)e[ ""p-I]_t,[ 'Mp-I].If t-Ie(kp,kp+p) then 

[ t-I]=k and k(p-I)+I<~(aM)<k(p-I)+p+1 so lim ~(aM)=oo. 
p 'w-

We also observe that 

[
aM -I] = at (P)-[!=!] = pt.1 -I [!=!]e[pkp+1 -I 

p P p-I P p-I 

Then if aM ~ 00 (as pX), it results that ~(aM) ~ 00 (as x). 

ip(aM) at(p)-t . . ip(a) 
From [] [] ~ 1 It results hm [ ] = 1 . a -I t-2 .- a-Ip 

_M_ ~(p) __ 
P P 

pkp+P+1 -I 
k,..lo...-.--

p-I 

Current Address: Department of Mathematics, University of Craiova, AI.Cuza. No.D, Craiova, 1100, 
ROMANIA 
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EXAMPLES OF SMARANDACHE MAGIC SQUARES 

by 

M.R.Mudge 

For n ~ 2, let A be a set of n2 elements, and I a n-ary law defined on A. 
As a generalization of the XVJ-th - XVII-th centuries magic squares, we 

present the Smarandache magic square of order n, which is: 2 square array of rows of 
elements of A arranged so that the law I applied to each horizontal and vertical row 
and diagonal give the same result. 

If A is an arithmetical progression and I the addition of n numbers, then many 
magic squares have been found. Look at Durer's 1514 engraving "Melancholia" 's one: 

16 3 2 13 
5 10 11 8 
9 6 7 12 
4 15 14 1 

1. Can you find a such magic square of order at least 3 or 4, when A is a set of prime 
numbers and I the addition? 

2. Same question when A is a set of square numbers, or cube numbers, or special 
numbers [for example: Fibonacci or Lucas numbers, triangular numbers, 
Smarandache quotients (Le. q(m) is the smallest k such that mk is a factorial), etc.]. 

A similar definition for the Smarandache magic cube of order n, where the 
elements of A are arranged in the form of a cube of lenth n: 

a. either each element inside of a unitary cube (that the initial cube is 
divided in) 

b. either each element on a surface of a unitary cube 
c. either each element on a vertex of a unitary cube. 

3. Study similar questions for this case, which is much more complex. 
An interesting law may be leal , ~, ... , aD) = al + ~ - 3:J + a4 - a, + ... 

Now some examples of Smarandache Magic Squares: if A is a set of PRIME 

NUMBERS and 1 is the operation of addition, for orders at least 3 or 4. 

Some examples, with the constant in brackets, elements drawn from the first hundred 

PRIME NUMBERS are: 
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83 89 41 

29 71 113 

101 53 59 

(213) 

97 907 557 

367 167 67 

997 647 337 

107 157 967 

587 277 227 

101 491 251 

431 281 131 

311 71 461 

(843) 

397 197 

877 677 

137 37 

617 307 

127 937 

71 461 311 

521 281 41 

251 101 491 

(843) 

(2155) 

Now recall the year A.D. 1987 and consider the following 
primes congruent to seven modulo ten .... 

967 1987 2017 1987 9907 
2707 1657 607 (4971) 4877 12037 
1297 1327 2347 10627 2707 

11317 4157 

(28808) 

7 2707 5237 937 947 
4157 1297 227 1087 3067 
1307 1447 1987 4517 577 (9835) 
2347 3797 1657 1667 367 
2017 587 727 1627 4877 

What about the years 1993. 1997. & 1999 ? 

113 149 257 

317 173 29 

89 197 233 

(519) 

.. all elements are 

11677 5237 

9547 2347 

4517 10957 

3067 10267 

In Personal Computer World. May 1991. page 288. I examine: 
A multiplication magic square such as: 

18 

4 

3 

1 

6 

36 

12 

9 

2 

with constant 216 obtained by multiplication of the elements m any 
row/column/principal diagonal. 



A geometric magic square is obtained using elements which are a given base 
raised to the powers of the corresponding elements of a magic square .. it is clearly a 
multiplication magic square. 
e.g. from 

816 

3 5 7 C=15 

4 9 

and base 2 obtain 

256 

8 

16 

2 

32 

512 

2 

64 

128 

4 

where M= 215 = 32768 

Note that Henry Nelson of California has found an order three magic square consisting 
of consecutive ten-digit prime numbers. But "How did he do that" ??1 

A particular case: 
TALISMAN MAGIC SQUARES are a relatively new concept, contain the integers 
from 1 to n2 in such a way that the difference between any integer and its neighbours 
(either row-, column- or diagonal-wise) is greater than some given constant, D say. 
e.g. 

5 15 9 12 

10 

13 

2 

1 

16 

8 

References 
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7 

illustrates D=2. 
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Base Solution 
(The Smarandache Function) 

Definition of the Smarandache function S(n) 

Henry Ibstedt 
Glimminge 2036 
280 60 Broby 
Sweden 

S(n) = the smallest positive integer such that S(n)! is divisible by n. 

Problem A: Ashbacher's problem 

For what triplets n, n-1. n-2 does tM SmartI1'l.Clm:he junction satisfy the Fibonacci reccurrence: 

S(n) =S(n-1) +S(n-2). Solutions have been found for n=l1, 121, 4902. 26245, 32112. 64010, 

368140 and 415664. Is there a pattern that would lead to the proof that there is an. infinite 

family of solutions? 

The next three triplets n, n-1, n-2 for which the Smarandache funtion S(n) satisfies the 

relation S( n) = S( n-1) + S( n-2) occur for n = 2091206, n = 2519648 and n = 4573053 . Apart from 

the triplet obtained from n = 26245 the triplets have in common that one member is 2 times 

a prime and the other two members are primes. 

This leads to a search for triplets restricted to integers which meet the following 

requirements: 

n = xp3 with 3.$p+1 and S(x)<ap 

n-1 = yqb with ~q+ 1 and S(y)<bq 

n-2 = zr' with c::; r+ 1 and S(z) < cr 

(1) 

(2) 

(3) 

p,q and r are primes. With then have S(n)=ap, S(n-1)=bq and S(n-2) = cr. From this and by 

subtracting (2) from (1) and (3) from (2) we get 
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ap = bq + cr 

xp. _ yqb = 1 

(4) 

(5) 

(6) 

Each solution to (4) generates infinitely many solutions to (5) which can be written in the 
form: 

y = Yo - p~ (5') 

where t is an integer and (XotYo) is the principal solution, which can be otained using Euclid's 
algorithm. 

Solutions to (5') are substituted in (6') in order to obtain integer solutions for z. 

z = (yqb _ l)/rc (6') 

Implementation: 
Solutions were generated for (a.b,c)={2,l,l), (a.b,c)={l,2,l) and (a.b,c)=(l,~) with the 
parameter t restricted to the interval -9 s t s 10. The output is presented on page 5. Since 
the correctness of these calculations are easily verfied from factorisations of 5(n), 5(n-1}, 
and S(n-2) some of these are given in an annex- This study strongly indicates that the set of 
solutions is infinite. 

Problem B: Radu's problem 

Show that, except for a finite set of numbers, there erists at least one prime number between 
S(n) and S(n+ 1). 

The immediate question is what would be this finite set? I order to examine this the 
following more stringent problem (which replaces "between" with the requirement that 5(n) 
and S(n+ 1) must also be composite) will be considered. 

Find the set of consecutive integers n and n + 1 for which two consecutive primes p" and p" +1 

exists so that p" < Min(S(n),S(n+1)) and Ph1 > Max(S(n),S(n+1)). 

Consider 
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n - yP , - r+l 

where Pr and Pr+l are consecutive primes. Subtract 

5 , - 1 XPr - YPr+l - (1) 

The greatest common divisor (P/,Pr+l') = 1 divides the right hand side of (1) which is the 
condition for this diophantine equation to have infinitely many integer solutions. We are 
interested in positive integer solutions (x,y) such that the following conditions are met. 

1. S(n+1) = sPro i.e S(x) < sPr 

ll. S(n) = sPr+l' i.e S(y) < SPr+l 

in addition we require that the interval 

ill. SPrS < q < SPr+l' is prime free, i.e. q is not a prime. 

Euclid's algorithm has been used to obtain principal solutions (~Yo) to (1). The general set 
of solutions to (1) are then given by 

x = Xc + Pr+l't. y = Yo - pr't 

with t an integer. 

Implementation: 
The above algorithms have been implemented for various values of the parameters d =Pr+ 1 -

Pro s and t. A very large set of solutions was obtained. There is no indication that the set 
would be finite. A pair of primes may produce several solutions. Within the limits set by the 
design of the program the largest prime difference for which a solution was found is d =42 
and the largest exponent which produced solutions is 4. Some numerically large examples 
illustrating the above facts are given on page 6. 

Problem C: Stuparo's problem 

Consider numbers written in Smarandache Prime Base 1,2.3,5,7,11, .... given the e:mmp/e that 
101 in Smarandache base means 1· 3+0· 2+ 1·1 =410• 

As this leads to several ways to translate a base 10 number into a Base Smarandache 
number it seems that further precisions are needed. Example 
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100lSmarudacDe = 1· 5+0· 3+0· 2+ 1· 1 = 610 

Equipment and programs 

Computer programs for this study were written in UBASIC ver. 8.77. Extensive use was 
made of NXTPRM(x) and PRMDIV(n) which are very convenient although they also set 
an upper limit for the search routines designed in the main program. Programs were run on 
a dtk 486/33 computer. Further numerical outputs and program codes are available on 
request. 
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Smaf'andachl! - Ashbachl!f"s pf'oClem_ 

, N SeN) S(N-1) S(N-2) t 

1 11 11 5 6 0 

2 121 22 5 17 0 

3 4902 43 29 14 -4 

4 32112 223 197 26 -1 

5 64010 173 46 127 -1 

6 361S140 233 82 151 -1 

7 415664 313 167 146 -8 

8 2091206 ZiI9 202 67 -1 

9 251964a 1109 202 907 0 

10 4573053 569 106 463 -3 

11 77'83364 2591 202 2389 0 

12 79269727 2861 2719 142 10 

13 136193976 3433 554 287'9 -1 

14 321022289 7589 178 7411 5 

15 445810543 1714 761 953 -1 

16 559199345 1129 662 467 -5 

17 670994143 6491 !38 5653 -1 

18 836250239 9859 482 9371 1 

19 893950202 2213 2062 151 0 

20 1041478032 2647 1286 1361 -1 

21 1148788154 2467 746 1721 3 

22 1305978672 5653 1514 4139 0 

23 1834527185 3671 634 3037 -5 

24 2390706171 6661 264Z 4019 0 

25 2502250627 2861 2578 283 -1 

26 3969415464 5801 1198 46Q3 -2 

27 3970638169 2066 643 1423 -6 

28 6493607750 3049 1262 1787 5 

29 6964546435 2161 1814 347 -4 

30 11329931930 3023 2026 997 -4 

31 134293263 13 4778 1597 3181 1 

32 1384955 ?6ZO 6M3 2474 4409 1 

n 14988125477 3209 291!6 223 2 

34 17560225226 4241 3118 1123 -2 

35 25184038673 55aZ 1951 3631 -2 

36 69481145903 6301 3722 257'9 3 

37 155205225351 8317 4Q34 4283 -5 

38 196209376292 7246 3257 3989 -5 

39 3446456tJ9138 7226 2803 4423 9 

40 401379101876 32122 653 31469 2 

41 484400122414 16811 12658 4153 -1 

42 533671822944 21089 18118 2971 0 

43 561967733244 21722 7159 14563 -1 

44 703403257356 13147 10874 2273 -2 

45 859525157632 14158 3557 10601 -5 

46 898606860813 19973 13402 6571 1 

47 118589234D42 18251 12022 6229 -2 

48 1188795217601 29242 13049 16193 0 

49 1294530625810 17614 5807 11807 -3 

50 1517167218627 11617 8318 3299 -8 

51 26T7290337914 33494 3631 29863 -3 

52 3043063820555 14951 12202 2749 5 

53 6344309623744 22978 7451 15527 6 

54 167386889'50356 30538 69T7 23561 10 

55 19448047080036 34186 17027 17159 -4 

Ashbachef"s problelll (ASHEDIT.U8), 951206, Henry Ibsudt 
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~. 1M .... ~.C; • "' ...... ::. prou~CIk. 

qsp(j). P-P(j.'>. ~q. Nax-q·s or yep·s. k solutions to x-q-s - ,-p·s "' ./-, wi II eaMined. 

Parameters for til; s n.n: d "' 2 s "' 2 • k z 15 • 

x y q p x·q·s yep·s 

13039 12198 59 61 45388759 45388758 
1876 1755 59 61 6530356 6530355 
7975 7544 71 73 4Q201975 40201976 

26 25 101 103 265226 265225 
5913 5698 107 109 67697'157 67697938 

113967 110968 149 151 ZS30181367 ZS30181368 
38 37 149 151 843638 843637 

49063 48438 311 313 4745422423 4745422422 
636nO 628609 311 313 61584195120 61584195121 

60988 60291 347 349 7343504092 7343504091 
182614 180521 347 349 21988369126 21988369127 

1071729 1062490 461 463 227764918809 227764918810 
116 115 461 463 24652436 24652435 

214485 212636 461 463 45582566685 45582566684 
1011961 1D6Z720 461 463 2278142Z3681 227814223680 

131 130 521 523 35558771 35558770 
1914834 1900217 521 523 519764455194 519764455793 

143 142 569 571 46297823 46297822 
3386439 3370000 821 823 2282598129999 2282598730000 

206 2D5 821 823 138852446 138852445 
2709522 2696369 821 823 1826328918402 1826328918401 

215 214 857 859 157'906535 157'906534 
1475977 1469112 857 859 1084029831673 1084029831672 
3689620 3672459 857 859 27WCi31119380 27W837119379 

221 220 881 883 111531581 111531580 
2339288 23287'03 881 883 1815664113368 1815664113367 
5649579 5628340 1061 1063 6359849721459 6359849721460 

266 265 1061 1063 299441786 299441785 
5650111 562887'0 '1061 1063 63lQ"86D5031 6l6D' ( 8605030 

597051 594868 1091 1093 710658461331 710658461332 
664416 662113 1151 1153 880218981216 880218981217 

199382.5 1986914 1151 1153 2641421353825 2641421353826 
7311461 7286118 1151 1153 9681523'*"261 968623D844262 
9970279 9935720 1151 1153 13208635589479 13208635589480 
84a8119 846268D 1301 1303 14368D14268119 14368D1426812O 
5093101 5077478 1301 1303 86205878457Ul 862D587845702 

326 325 1301 1303 551787926 5517!7925 
5093753 5078128 1301 1303 8621691421553 8621691421552 
8489371 8463130 1301 1303 14369117843971 14369117843970 
261m1 2609312 1319 1321 4553356421791 4553356421792 
1393198 1389861 1667 1669 3871542597022 3871542597021 
9749D46 9725695 1667 1669 27091516689894 27091516689895 

14432580 14398621 1697 1699 41563073111220 41563073777221 
2886176 287'9385 1697 1699 8311635620384 8311635620385 

425 424 1697 1699 1223918825 1223918824 
431 430 1721 1723 1276553471 1276553470 

2969160 2962271 1721 1m 879417'9823560 8794179823559 
16007D8 1597131 1787 1189 511165 1305252 5",65130525 I 
1599813 1596238 1787 1789 51 D8793239997 51OS793239W8 

24003460 23949821 1787 1789 76651905056740 76651905056741 
19295178 19253993 1871 1873 67545491209098 67545491209097 

1753596 1749853 1871 1873 6138710055036 613871 0055037 
470 469 1877 1879 165587063D 1655870629 

14123034 14092985 1877 1879 497'5727'0653386 4975727D653385 
7612314 7596115 1949 1951 289161435727t4 289161435n715 
3805913 3798114 1949 1951 14451144927713 14457144927714 

488 487 1949 1951 1853717288 185371n87 
19C32493 18993492 1949 1951 7Z2968lo6942293 72296846942292 
11987503 11963528 1997 1999 47806269851521 47806269851528 

500 499 1997 1999 1994aD45oo 1994004499 
521 520 2081 2083 2256222Z81 225622Z28D 
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Siarandacne - RlIdU's proal_. 
qap(j), p-p(j+1), d=p-q, Nazeq·s or yep·s, Ic solutions to xeq·s • yep·s = +/-1 will ex_ined. 

Per_ters for this run: d = 2 , s = 2 , Ie = 15 • 

z y q p zeq's yep·s 

4339410 4331OS1 2OS1 2083 1879207'9709010 1879207'97D9009 
11162451 11141330 2111 2113 49743' 6( 8027T1 49743464802770 

2232913 Z228688 2111 2113 9950577093073 99505770930n 
2231856 2227633 2111 2113 9945866761776 9945866761777 

15626163 15596596 2111 2113 69635198326323 69635198326324 
33485239 33421880 2111 2113 149220973745719 149220973745720 
35091287 35028624 2237 2239 175602730575503 175602730575504 
10025682 10007779 2237 2239 50170207068258 50170207'068Z59 

560 559 2237 2239 28OZ33L64D 28OZ334639 
2574748 2570211 '2267 '2269 13232374074172 13232374074171 

38612140 38544101 '2267 '2269 198438946368'60 198438946368461 

22714160 '22676049 2381 2383 128770230019760 128770Z30019761 
596 595 2381 2383 3378819956 3378819955 

17036663 17008078 2381 Z383 96583585449743 96583585449742 
16809771 16783850 2591 2593 112848716268651 112848716268650 
21210178 21178283 2657 2659 149736411907522 149736411907523 

665 664 2657 2659 469'6"585 4694666584 
14141227 14119962 2657 2659 9983Z099049323 99832099049322 
10846754 10830625 2687 Z689 78313227630626 78313227630625 
40482708 40423043 2711 2713 Z975Z85 12582868 Z975Z85 12582867 
11041232 11024959 2711 2713 81147766449872 81147766449871 

683 68Z 27Z9 2731 ~0866Q?203 5086602202 
52209210 52132769 27Z9 2731 388825011131610 388825011131609 
39283344 39227305 2801 2803 308201442969744 308201442969745 

701 700 2801 2803 5499766301 5499766300 
23571128 23537503 2801 2803 184929665407'928 18492966S407'927 
31427937 31383104 2801 2803 2465i'1I53955137 2465710sn55130 

4871101 4864860 3119 3121 47386854775261 47386854775260 
6878.3!72 68699319 3251 3253 726976811951S7Z 726976811951871 

5291818 5285313 3251 3253 55929Z29/:s:sa18 55929Z29133a17 
5290191 5283688 3251 3253 55912033969191 55912033969192 

79364254 7'9Z66695 3251 3253 8388OO87'9a9025 83880087'9890255 
815 814 3257 3259 8645559935 8645559934 

53106Z20 53041OS9 3257 3259 563353383964780 563353383964779 
5687721 5680978 3371 3373 64633219552161 64633219552162 

866 S65 3461 3463 10373399186 10373399185 
890 889 3557 3559 "Z60501610 11260501609 

64188549 64116910 3581 3583 8231257736029a9 823125773602990 
38512771 38469788 3581 3583 493870868197531 493870868197532 

896 895 3581 3583 11489910656 11489910655 
6744546 6737Z03 3671 3673 90891127331586 90891127331587 

46074703 46027688 3917 3919 706919053836967 7D6919053836968 
980 979 3917 3919 15036031220 15036031219 
983 982 3929 3931 15174611303 15174611302 

15453744 15438023 3929 3931 238560079731504 238560079731503 
3090650S 30875064 3929 3931 47710498485 1705 477104984851704 
48071026 48023003 4001 4003 76952\03ZZ/90Z6 769521032279027 

1001 1000 4001 4003 16024009001 16024009000 
48073028 48025003 4001 4003 769553080297028 769553080297027 
25129997 25105444 4091 4093 420582691321157 420582691321156 
25127950 25103399 4091 4093 42054a432153950 420548432153951 

125643844 125521085 4091 4093 2102810679104164 2102810679104165 
8525353 8517096 4127 4129 145204912066537 145204912066S36 
8523288 8515033 4127 4129 145169740720152 145169740720153 

76717852 76643549 4127 4129 1306668351866908 1306668351866909 
1OS5 1054 4217 4219 18761158895 18761158894 

89000860 88916499 4217 4219 1582710214456540 1582710214456539 
540OS086 53957183 4241 4243 971393809450966 971393809450967 

1061 1060 4241 4243 19083231941 19083231940 
97813539 97725100 4421 44Z3 1911789192817899 1911789192817900 
19561823 19544136 4421 4423 382340S44934343 3BZ340544934344 

1106 11 OS 4421 44Z3 21617'036546 21617036545 
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S.,.andadle • RadI./' s p"oOl_. 
qap(j). pap(j+1). aap'q, N •• -q"S 0" yep"s. k solutions to .-q"s • yep"s •• ,·1 will u_ined. 

Pa,.amete,.s foro this run: d = 2 • s = 2 , k = 15 • 

x y q p .-q"s yep"s 

19564035 19546346 4421 4423 382383779001435 38238317'9001434 
97815751 91127310 4421 4423 1911832426890991 1911832426890990 

1130 1129 4517 4519 23055116510 23055116569 
113814843 113114786 4547 4549 2353145666321187 2353145666321186 

10347838 10338141 4547 4549 213943113348142 213943113348141 
10345563 10336468 4547 4549 213896611241667 213896611247668 

113812568 113112513 4547 4549 2353098630226112 2353098630226113 
43262439 43225240 4649 4651 935039189857239 935039789!S1240 

1163 1162 4649 4651 25136152163 25136152162 
86528367 86453966 4649 4651 1870154988112167 1870154988112166 

1181 1180 4121 4123 26321940221 26321940220 
12168418 12158613 4931 4933 295873634303158 2958736343D3157 
36500500 36410909 4931 4933 887500933880500 887500933880501 

158112945 158044114 4931 4933 3845937354341145 3845937354341146 
86419606 86350053 4967 4969 2132065790970934 2132065790970933 
37035199 31005392 4967 4969 913698690661111 913698690661112 

125549352 125449153 5009 5011 3150043411117512 3150043411117513 

100439231 100359012 5009 5011 252002844 1367111 2520028441367112 

1253 1252 5009 5011 31437811493 31437!7'1492 
7'5331616 75211495 5009 5011 1890076347300896 1890016347300895 

176612447 176411832 5021 5023 4452471614959121 4452471614959128 
1256 1255 5021 5023 31664313896 31664313895 

117092180 11100037'9 5099 5101 3044373378656 lao 304437337865617'9 
13011376 13001175 5099 5101 338293186736116 338293186736 175 
13008825 12998626 5099 5101 338226861243825 338226861243826 
1597'9618 15968313 5651 5653 51028994126a018 51028994126a011 

111&46018 111166891 5651 5653 35716.:1a481454418 35716684a1454419 
155004692 154899067 5861 5869 5335523301564788 5335523301564781 
51666274 51631061 5867 5869 177a440415416786 177a4404 154 16781 

258337240 258161201 5861 5869 8892404132391B6O 88924041l239!36 1 
51880712 51845431 587'9 5881 17931344236aa392 1793134423680391 
11294551 17282790 587'9 5881 597145351469191 597145357469190 
17291610 11219851 587'9 5881 591643108142010 5916437D8142011 
51871711 51842492 587'9 5881 1793D32174953211 1793D32174953212 

190222415 190093056 587'9 5881 65145890397'98015 65145890397'98016 
224808516 224655691 587'9 5881 7169918106009216 7169918106009211 

1523 1522 6089 6091 564666216113 56466621682 
185502928 185381121 6089 6091 6B716919037'96688 6B716919037'96681 

1550 1549 6191 6199 59524353950 59524353949 
16856752 16801161 6191 6199 2951515161416368 2951515161416361 

115284353 115209976 6191 6199 4421242988947571 4421242988947516 
1643 1642 6569 6511 7tI898343323 7'D898343322 

86357125 86305164 6569 6511 3726487W9fW725 3726487'9097D3724 
66555041 66515086 6659 6661 2951202596042201 295 1202596042206 

1676 1675 6701 6703 75258100016 7525r.100075 

161508670 161413581 67'91 6193 14484053217'9427D 7448405321794269 

116589810 116521529 6827 ~ 5434009586603490 5434009586603489 
69954569 69913600 6827 6829 l2604375851716O1 l2604375851716OO 

1718 1717 6869 6811 81060670598 81060670591 

120719765 120650286 6947 6949 5826033521189885 582603352111S9886 

127058385 126987104 1121 1129 6453819998221665 6453819998221664 
341241454 347051445 7307 7309 18540002175090046 18540002175090045 

133551875 133478796 7307 7309 1130634964416875 7130634964416816 

80661161 80617114 7331 7333 4335018348995681 4335018348995686 
26888278 26873613 7331 7333 1445071808877'958 144507180881f957 

26884611 26869948 7331 7333 1444814731239171 1444814731239112 

Radu's proal_. POI Oct. 95, 951128, Henr-y Ibstedt 
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Smaranaac~e . Radu's proOlem. 

q=P(j), p:p(j.'), d=p·q, ~=.·q·s or yep·s. Principal solution to x·q·s . y·p·s = +/·1: xO,yO. 
General solutIons: x = .0 • t*p's, Y = yO • t*q·s. 

11,11+1 5(N),5(II+l) 

l1a2293666471S339578483018 3225562 
11822936664715339578483017 3225646 

11157906497858100263738683634 165999 
11157906497858100263738683635 166011 

17549865213221162413502236227 165999 
17549865213221162413502236226 166011 

270329975921205253634707051a22848S70391314 669764 
270329975921205253634707051a22848570391313 669m 

RadU's proolem (RAOUpres.UB), 951129, Henry Ibstedt 

Factoriutions: 

11822936664715339578483018 z 2 • 3 • 89 * 193 • 431 • 1612781 • 2 
l1a22936664715339578483017 = 509 * 3253 • 1612823 . 2 

11157906497858100263738683634 = 2 • 7 • 37 . 2 • 56671 • 55333 . 3 
11157906497858100263738683635 = 3 * 5 • 11 • 19 . 2 * 16433 • 55337 . 3 

17549865213221162413502236227 = 3 • 11 . 2 • 307 • 12671 • 55333 • 3 
17549865213221162413502236226 = 2 • 23 • 37 • 71 • 419 * 743 • 55337 - 3 

d s 

42 2 

4 3 

4 3 

2 4 

·2 

0 

-1 

0 

270329975921205253634707051822848570391314 : 2 • 3 . 3 • 47 • 1289 • 2017 • 119983 • 167441 - 4 
270329975921205253634707051822848570391313 = 37 • 23117 • 24517 • 38303 • 167443 . 4 

RadUfact, 951129, Henry Ibstedt 

Adjacent primes: 

Smarandac~e function values in the above examples: 51 and 52. 
Pl and P2 are consecutive primes below and above 51 and S2 respectively. Prime gap = G. 

Pl 

3225539 
165983 
669763 

Raduadj, 951130, Henry Ibstedt 

51 

3225562 
165999 
669764 

94 

52 

3225646 
166011 
669m 

P2 

3225647 
166013 
669787 

q,p 

1612781 
1612823 

55333 
55337 

55333 
55337 

167441 
167443 

G 

108 
30 
24 



Factorisations: Ashbecher - Fibonacci 

II a 1185892343342 ,. 2· 7 - 2 • 41 • 14101 • 18251 - 1 
11-1 ,. 1185892343341 a 23· 1421 • 6011 - 2 
11-2 ,. 1185892343340 a 2 - 2 • 3 • 5 • 523 • 6061 • 6229 • 1 
5.(11) a 18251 ,. 18251' 1 
5(11-1) ,. 12022 • 2· 6011 - 1 
5(11-2) a 6229 • 6229 - 1 

II a 11887'95217601 a 67· 83 • 14621 - 2 
11-1 a 11887'95217600 a 2 - 6 • 5 • 2 • 91 • 587 • 13049 - 1 
11-2 ,. 11887'95211599 a 3' 2 • 11 • 11 • 181 • 241 • 16193 -
5(11) ,. 29242 a 2· 14621 - 1 
5(11-1) a 13049 ,. 13049-
5(11-2) ,. 16193 ,. 16193' 

II a 1294530625810 ,. 2· 5 • 1669 • 8801 - 2 
11-1 ,. 1294530625809 a 3 - 2 • 101 • 103 • 2381 • 5801 - 1 
N-2 ,. 1294530625808 = 2 - 4 • 7 • 19 • 67 • 769 • 11801 -
SeN) a 17614 a 2· 8807 - 1 
5(11-1) a 5801 a 5801' 1 
5(11-2) a 11801 = 11801' 1 

II • 1517761218621 • 3· 11 • 101 • 163 • 221 • 11611 - 1 
11-1 • 1517761218626 • 2· 73 • 601 • 4159 . 2 
11-2 ,. 1517761218625 a 5 - 3 • 7 • 11 • 157 • 191 • 3299 • 
5(11) a 11617 a 11617 - 1 
5(11-1) ,. 8318 = 2· 4159 - 1 
5(11-2) ,. 3299 z 3299' 1 

II a 2671290337914 • 2· 3 • 37 • 43 • 16747 • 2 
11-1 a 2671290337913 ,. 47'9· 739 • 2083 • 3631 - 1 
11-2 ,. 2671290337912 ,. 2 - 3 • 17 - 3 • 2281 • 291!63 • 1 
5(11) ,. 33494 ,. 2· 16747 • 1 
5(11-1) • 3631 • 3631 - 1 
5(11-2) ,. 29863 ,. 29863 - 1 

II • 3043063B20555 = 5· 11 • 571 • 6481 • 14951 • 1 
11-1 z 3043063B20554 a 2· 41 • 997 • 6101 - 2 
11-2 • 3043063B20553 a 3· 53 • 73 • 283 • 337 • 2149 - 1 
5(11) = 14951 ,. 14951 - 1 
5(11-1) • 12202 = 2· 6101 - 1 
5(11-2) a 2749 = 2749 - 1 

II = 6344309623744 ,. 2 - 6 • 151 • 11489 - 2 
11-1 = 6344309623743 ,. 3' 3 • 7 - 2 • 13 • 31 • 1591 • 7451 • 1 
11-2 a 6344309623742 ,. 2· 101 • 211 • 9049 • 15527 - 1 
5(11) a 22978 ,. 2· 11489 • 1 
5(11-1) a 7451 a 7451 - 1 
5(11-2) • 15527 a 15527' 1 

II a 16738688950356 • 2' 2 • 3 • 31 • 193 • 15269 • 2 
11-1 = 16738688950355 = 5· 191 • 1399 • 1741 • 6977 • 1 
11-2 a 16738688950354 = 2· 7 . 2 • 19 • 23 • 53 • 313 • 23561 . 1 
5(11) ,. 30538 ,. 2· 15269 1 
5(11-1) ,. 6977 = 6977' 1 
5(11-2) = 23561 = 23561 • 1 

II • 19448041080036 a 2' 2 • 3 - 2 • 43 • 2 • 17093 • 2 
11-1 ,. 19448041080035 a 5· 7 • 19 • 37 • 61 • 761 • 17027 • 
11-2 ,. 19448041080034 ,. 2· 97 • 1609 • 3631 • 11159 • 1 
5(11) ,. 34186 ,. 2· 17093 . 1 
S(II-1) a 17027 = 17027 - 1 
S(II-2) = 17159 = 11159' 1 

ASHfact. 951202, Henry Ibstedt 95 
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ON RADO' S PROBLEM 

by H. Ibstedt 

For a positive integer n. the Smarandache function S(n) is defined as the smallest positive 
integer such that S(n)! is divisible by n. Radu [1] noticed that for nearly all values of n up 
to 4800 there is always at least one prime number between S(n) and S(n+ 1) including 
possibly S(n) and S(n + 1). The exceptions are n=224 for which S(n) =8 and S(n+ 1)= 10 and 
n = 2057 for which S( n) = 22 and S( n + 1) = 21. Radu conjectured that, except for a finite set 
of numbers, there exists at least one prime number between S(n) and S(n+ 1). The 
conjecture does not hold if there are infinitely many solutions to the following problem. 

Find consecutive integers n and n + 1 for which two consecutive primes P ... and Pk + 1 exist so that 
P ... < Min(S(n),S(n+l)) and P"'+l > Max(S(n),S(n+l)). 

Consider 
n+l = xp/ 

and 
n _ yp S 

- r+l 

where Pr and Pr+l are consecutive prime numbers. Subtract (2) form (1). 

(1) 

(2) 

(3) 

The greatest common divisor (P/,Pr+1S
) = 1 divides the right hand side of (3) which is the 

condition for this diophantine equation to have infinitely many integer solutions. We are 
interested in positive integer solutions (x,y) such that the following conditions are met. 

S(n + 1) = sPr' i.e S(x) < sPr 

S(n) = sPr+l' i.e S(y) < sPr+l 

In addition we require that the interval 

sp/ < q < sPr+ls is prime free, i.e. q is not a prime. 

(4) 

(5) 

(6) 

Euclid's algorithm is used to obtain principal solutions (Xo.Yo) to (3). The general set of 
solutions to (3) are then given by 

(7) 

with t an integer. 
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Radu's Conjt:cturc. H. lbstcdt 

These algorithms were implemented for different values of the parameters d = Pr+ L - Pr ' s 
and t resulted in a very large number of solutions. Table 1 shows the 20 smallest (in respect 
of n) solutions found. There is no indication that the set would be finite. A pair of primes 
may produce several solutions. 

Table 1. The 20 smallest solutions which ocurred for s=2 and d=2. 

# n S(n) S(n+l) P1 P2 t I 
1 265225 206 202 199 211 0 
2 843637 302 298 293 307 0 
3 6530355 122 118 113 127 -1 
4 24652435 926 922 919 929 0 
5 35558770 1046 1042 1039 1049 0 
6 40201975 142 146 139 149 1 
7 45388758 122 118 113 127 -4 
8 46297822 1142 1138 1129 1151 0 
9 67697937 214 218 211 223 0 

10 138852445 1646 1642 1637 1657 0 
11 157906534 1718 1714 1709 1721 0 
12 171531580 1766 1762 1759 1777 0 
13 299441785 2126 2122 2113 2129 0 
14 551787925 2606 2602 2593 2609 0 
15 1223918824 3398 3394 3391 3407 0 
16 1276553470 3446 3442 3433 3449 0 
17 1655870629 3758 3754 3739 3761 0 
18 1853717287 3902 3898 3889 3907 0 
19 1994004499 3998 3994 3989 4001 0 
20 2256222280 4166 4162 4159 4177 0 

Within the limits set by the design of the program the largest prime difference for which a 
solution was found is d=42 and the largest exponent which produced solutions is s=4. Some 
numerically large examples illustrating the these facts are given in table 2. 
Table 2. 

n/n+1 S(n)1 d s t pr/Pr+l 
S(n+1) 

11822936664715339578483018 3225562 42 2 -2 1612781 

11822936664715339578483017 3225646 1612823 

11157906497858100263738683634 165999 4 3 0 55333 

11157906497858100263738683635 166011 55337 

17549865213221162413502236227 16599 4 3 -1 55333 

17549865213221162413502236226 166011 55337 

27032997592120525363470705~0391314 669764 2 4 0 167441 

270329975921205253634707051822848570391313 669m 167443 
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Radu's ConJccture. II. Ibstcdt 

To see the relation between these large numbers and the corresponding values of the 
Smarandache function in table 2 the factorisations of these large numbers are given below: 

11822936664715339578483018 = 2·3 ·89· 193· 431 . 16127812 

11822936664715339578483017 = 509· 3253 . 16128232 

11157906497858100263738683634 = 2'7372 '56671 '553333 

11157906497858100263738683635 = 3·5· 11 . 192
. 16433· 553373 

17549865213221162413502236227 = 3· 112 '307' 12671 '553333 

17549865213221162413502236226 = 2·23 . 37 . 71 . 419· 743 -553373 

270329975921205253634707051822848570391314 = 2'33'47' 1289·2017' 119983· 167441~ 
270329975921205253634707051822848570391313 = 37' 23117 . 24517 . 38303 . 1674434 

It is also interesting to see which are the nearast smaller Pk and nearast bigger Pk + 1 primes 
to S1 = Min(S(n),S(n+ 1» and S2 = Max(S(n),S(n+ 1» respectively. This is shown in table 
3 for the above examples. 
Table 3. 

P" S1 S., P~'H G=P,,+j-Pk 

3225539 3225562 3225646 3225647 108 

165983 165999 166011 166013 30 

669763 669764 669772 669787 24 

Conclusion: There are infintely many intervals {Min(S(n),S(n-l»,Max(S(n),S(n-1»} which 
are prime free. 

References: 
I. M. Radu, Mathematical Spectn.un, Sheffield Univerisry, UK. VoL 27, No.2, 1994/5, p. 43. 

98 



SOME CONVERGENCE PROBLEMS INVOL VI!'IG 

THE SMARA80ACHE FUNCTION 

by 

E. Burton, 1 Cojocaru, S. Cojocaru, C. Dwnittcscu 

Department o/lvlathemalic.;s. Unrl'ersity o/eraiova. 
eraiova (1100). Romanza 

In tlUs paper we consider same smes anl1llhed to che: SlIlllmndachl! fllllCllllJl (Dmdllcl senes and other (nwnenl::ll) scne:.l.1'.l;unptoul: behaviour aud wllvclgcncc 1l1"IhcliC ~cncli 
IS etabhshc:d. 

1. INTRODUCTION. The Smarandache function S : ," • ~ is defined [3 J sUl.:h thOlt Sen) is the smallest inlcgc:r n with the property that n! is divisiole oy n.lf 

( 1.1 ) 

is the decomposition into primes of the positiv integer n, then 

S(n) =max S(p~ ) (1.2) 
I 

and more general if nl V n'2 is the smallest commun multiple of n l and fl! then. 

Let us observe thaI on the set N of non-negative integers. there arc two lalliceal slmclurcs 
" generated respectively by v= max., 1\ -:: min and V = the last COltllllun 111 ult iph.:. 1\ = the 

d greatest commun dh,;sion. if we denote by !. anu s" thl: induced orders ill thc:o;e lalticcs.11 
results 

The calculus of SIp;). ) depend~ closet)· of two numeric;,1 scale, namel~' the standard scale 

(P) : 1. p, tY •...• p .. , ... 
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and the generalised numeri~al s~al~ [p J 

[P] : a,(P), ~(P), ... , aA(P), ... 

where ~(P) = (Pk-1)/(P-l). The dependence is in the scns that 

Sipa. ) = pI a.1FJ}(P) (1.3 ) 

so, S(pa.)is obtained multiplyng p by the number obtained writing a. in the scale lp 1 and 
"reading" it in the: scale: (P). 

Let us observe that if bD(P) = pD then the calculus in the scale [p J is essentialy different 
from the standard scale (P), because : 

ba.1(P) = pbn(p) but a,"'I(p) = pan(p) .... 1 
(for more details see [2] ). 

We ~ also (1] th.st 

s(pa.) = (p - l)a + Glrl(a) 

where alPl( 11) is the sum of digits of the number u. wrill:n in the s~alc I P I. 

(1.4 ) 

In ["' J it is showed that if I\l is Euler's totienl tunction and we: nOle \(11.) ~ S(P" ) then 

(1.5) 

0,-' 
It results that <;I(p7') = S(p~' ) - p so 

ql(n) = h l·s(p~'''''\ )-PI) .. 
, =1 

In the same paper [4] the function S is extended to the: set Q of rational numbers. 

2. GENERATING FLl'J'CTIONS. It is known thaI We m.lv all.lshe to e:\l.:h nume,i~al 
function f:N*->C the Diriduct serie : . 

which for some z = x + iy may be convergent or not. 
The simplest Dirichlet series is: 

called Riemann's function or zeta function where is convergent for Re(z) > 1. 

(2.1 ) 

(2.2) 

It is said for instance that if f is Mobius function ( ~I( 1) '" 1.)l (PI 1>; .. "p,) = (-1)' and)1 (n) 
= 0 if n is di\-isible by the squ.lr of a prime number) then I),. (Z) = IIJ(Z) for x> I. and if f is 
Euler's roticnl tUnction (<p(n) = the numbe:r of positive: intcgc:rs not greater than and prime 10 

the positive integer n ) then Dp(z)=3(z-l)13(z) for x>2 ). 

We have also Dd(z) = 31(z), tar x ;> 1, where d(n) is the: number of divi'lOOi of n. 
inc;l\l<ii..ng lind n; Ind D:: .. (n) = 3(z} ·3(z-k} (for x :> I, x ;. k+ n whf,:rc <1.(n) ill the !Cum of 
the k-th powers of the divisors of n. We: write a(n) tor cr ,(n). 
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In the sequel let we suppose that z' is a real nwnbc:r, so Z = x. 
F or the Smarandache function we have: 

If we note: 

~ ~n) D,<x) = _ . 
" n';' : 

F?(n) = ~ j(k) 
~II 

it is said that Mobius function make a connection betw(:en f ilnd ft by the inversion formula: 
t(n) = 1: P,'lk )P'(!t!' ) (2.3) 

r-..... " . 

The functions F/ an: also called generating functions. 
In [4] the Sm3T3ndache functions is regarded as a generating function and is constructed the 
function s. such that: 

so(n) = 1: S(k)p.(~ 
t~1I 

2.1. PRQPOSmON. For all x > 2 we have : 
(i) 3(x) S Ds(x) S 3(x-l) 
(ii) 1 ~ D~(x) ~ D.(X) 

(iii) 31(x) S D '$( x) S 3(x) -3(x-l) 

Proot: (i) The asenion results from the lact that 1 s S{ Jl) ~ n, 
(ii) Using the: multipliC.1tion of Dirichlct series wc have: 

-1... . D (x) = (f J.Ilk») (f .(k')' = ~ l)S( 1) + J.I( 1)~z1"'1I(1I~ I) + 
,(.) I .... 1 .. ' .... 1 .. ' J' 

'" " = ~ ~ = D, (lc:') .. ' ~ 
"'1 

and the a.sertion result using (i). 

so the inequalities holds using 0). 
Let us observe that (iii) is equivalent to D~(X) ~ D,~ < Do(X) .TheKc incqualilicK c~n 

be deduced ~ observing that from I ~ ~ n) :; n it result: 

so, 
d(n) S F,(n) s cr(n) (2.4) 

But from the fact that F, < n + 4 (proved in [5]) we deduce 
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Until now it is not known a clos~d formula for [he: I.:alculus of[h~ functions D.::(x), D.,(x) or 

D,s lX), but w: '.::m ckduce asirnptotic behavioW' of th:se functions using th: fol!O'.'.'ing '0'.':11 
known results: 

2.2. THEOREM. (i) 3(z) =....l.... + 0(1) 
1-1 

(ii) In3(z) = ln~ + O(z-l) 
1-1 

(iii) 3'(z) = --'- ... 0(1) (rv' 

for all complex number. 
Then from the proposition 2.1 we can get inequalities i1S the fallowings: 

(i) ~ ~ O( 1) ~ D"tx) ~ -' .,. 0(1) 
• -1 , -2 

for some positive const.1nt A 

(iii) -~ + O( 1) $ d (x) $ -~ + 0( 1) • 
( ..... ,,- "( ..... z) 

The Sm.vandache functions S may be extended to all the nonncgoltive integers dclining 
S( -n) = Sen). 

In [3] iI is proved that the sene 

is convergent and has the sum q E (e-l,2). 
We can consider the function 

convergent for all Z E C because 

and so ';;" -. 0 

2.3. PROPOSmON. 'Ibe l\mction f statistics 't~Z)! ~ qz an lhl.: unil dis\.: 
U(O,I) = {z liZ! <: I}. 

Proof. A lema docs to Schwartz asert th:l[ if the function f is olomorphe on the unit disc 
U(O,I) = { z I I~ < I} and satisfies reO) = 0, If(z)1 ~ 1 for z E U(O,I) tht.-n If(z)! ~I~~ on 
U(O, 1) and If'(O)I!; 1. 

For ill < 1 we fave iHz)1 < q so (1Iq) ttZ) satistic.:s thl.: ~ondjtjons of !)chwar1z It.-ma. 

3. SERIES INVOLVING THE SMARANDACHE FUNCTION. In this scction wc 
shall studie the convergence of some series concerning the function S. 

Let b: N*-->N* be the function defined by: b(n) is the complc:men. of n until the: 
smallest factorial. From this defInition it results that ben) = (S(n)!)/n for all n E~·. 
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3.1. PROPOSmON. The sequences (b(n»",Hand also (b(n)/nk)"d for keR. :m: 
divergent. 

Proof. (i) The asertion results from the fact that h(n~) = 1 and if(Pn)""' is the sc:qm:m;c: 
of prime members then 

b( ) - ~.)' p.' 1 I 
P --=-=,,, - ) n p. p. \.1''' • 

(ii) Let we note r" = b( n)1 rrC. Then 

and for k > 0 it results 

J{",)I II! 
X,=--=--~O 

II. e,,!)A01 en!)'OI 

_ sr,,)! 

r" - ".hl 

because it in said [6] that PI 1'1 .... 1' .. , > Pn
k•l for n sufficiently l.1rgc. 

3.2. PROPOSmON. The sequence T(n) = 1 + t b(1) -In b(nl is divergent. 
1~2 II 

Proof. If we suppose: ~t lim 1\ n) = I < co • thc:n because E ~(I :: 00 (sl.!e 131> it rl.!suiLo; 
11-.10 1=2 U It) 

the contradiction lim In/xn) = to . ,,_C> ... 
If we suppose lim T( n) = - to, from the c:qWllity In b( n) = 1 + 1: b(1) - 11 n) it results 11- /aZ " 

lim Inb(n) = to . .. -
We cmlt have lim T( n) = +GO becall~e T(n) < O. Indeed., from i :$ SCil! tor i ~ 2 it results ,,_C> 

i / S(i)1 ~ lfor all i ~ 2 
10 

T(p,,) = 1 + ~)! + ... + ~:)! -In«p" - 1)1) < 1 + (p,,- 1) -In((p" - J )!) = 

=p" -In(p" - J)!). 

BUI for k sufficiently large we h.1ve ek<{k-l)! thaI is th(.'Te c.:XistK mE N /;() thaI r,,< In( (p" - 1 )1) 
tor n ~ m. It resul15 P. -1n«P" - 1 )!) < 0 tor n ~ m. md so T(n) < O. 

Let now be the function 

3.3. PROPOSmON. The scric 

(3.1 ) 

is convergent. 
Proof. the sequence (b(2)+b(3)+ .. , + b(n)}. is strictlcy increasing to rJ.' and 
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10 we have 

S(~)' S(3)' EEl:. 
T+-s-> 2 

3(2)! :;(3)' .)(4)! 5'(3)' .)(')' 
-Z- + -]- + -.- + -3- > -3-

5(2)' .:;'{J)' ;;(.j)' SO)' S{G)! S(7) S('0' 
-2-+ -J-~ 7~ -,- + -6- ~ -7- > 

"";;"",,-. -:;~.:l.-" ~",~.-...... .:..~ ';':)1' .,)(4) ~.:.., ~ 
TT-l--. "T' -)-.• '-~-. 

SO)I .sO)' ")'1.,1 + .... < 
-l-.. -;-·· .. ··-.-

2 1 2 • 2 Phl-Pt 
< Jnll + R))' + R)' + .sr7)' + Rill' + ... + ~ + .... 

I l S 7" Pr"' 

- 1 . ~ P.<P ••• -P.) 
<.. .. - .;::t~ )' c2.2 _!. 

But (PD-1)1 > PIPl""P. for n <! 4 and then 

... H-1 19 ... 
~ b (n) < ~ ~ ... at 
~~z - t~4 

whe:rc 

Because PIPz ... Pk > p' k+l for k sufficiently large, it results 

~ < P~" = + for k~k. 
Pt., Pl., 

and the convergence of the scr1e (3.1) follows from the convergence of the serie: ~ I 
- -2-' 

t'UoPt,. 

In the: followings we give an elementary proof or [he: convl!rgen~1! of [he series 
.. I 
1: . , ex E R, a. > 1 provides ini()rmalion on Ihe ~()nvcrgcn~c hch;lvior or Ihe sencs 

1'=2 S(t) " JS(t)' 
... I 

Ez~' 

3.4. PROPOSmON. The: series E ~ , converges if u ~ R and u > 1. 
~2 :;(./')" .':it)! 

Proof. .. 
~ _---'~=- ___ 1_ t- _1_ ~ _1- -t _1_ + _,_ I 1 I' _1_ I 

;;2 S(C) .. is(C)! - Z 0. .fi! 1 Q, /l! 4 .. .[4! , .. • f';; J r. iF 7 ... r:;; 4 .. fP 
., . 
,~~ 

r:"z r G ./f7 

where ~ denotes the number of clements of the sct 

~ { keN·, S(k)=t } = { ke N·, kit and k I (t-I)! }. 
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It follows that ~ { kE N·, kit } and there fore m, <d(l!). 

Hence m, < 2./i! and consequently we h.we 

... ... 2 ~I' Co 
~"" ~" . ., \~ I ... --< ... --=- ... -

1=2 la It! t=2 I~ It! 1S2 I" 

.. 
So, t ""r.. converges. 

"Z'''.;t! 

3.5. PROPOSmON. ta /if < t! ifu E R, u> 1 and I ;. I. = [e latl }, I': N·. (where 
[x] means th\: integc:r pan of x). 

Applyng the well-~own result that r > 1 + % if x > 0 for x = 2(1 we have:: 
(eZILyAoI-zu> (eZU)ZU+l+l-ZU = (eZU)l = e4a. > ezu. 

if .- 1 ~_. Ja I I-Ia So, t> e""'+ we ~~ e < (i) 

It is well known that (~)' < t! if IE N·. 

Now, the proof of the proposition is obtained as follows: 

(2) 

(04) 

(5) 

Ift> t. = [eZU+11 tEN- we have: ezu < (~)t-ZU Q rzu < (~)I < tl. Hence tZU < t! if I >t. md 
this proves the proposition. 

CONSEQUENCE. The series JI .)(~)! convc:rges. 

Proof. f <:Y~)' = r "'I: where m, is defined as above:. 
~2...... . ,.2' 

Ift> I. we have ta..jii < II Q -L > 1 Q ~ > :!. ,. It! t! ,. [if r! 

Since f ~ converges it results th;lt ~ ~ also converges. 
t=Z to. rr. t=l I! 

REMARQUE. From the definition of the Smarandache function it results that 

card { kE N·: S(k)=t } = card { kE N*: kit and k I (t-l)!} = d(t!)-d(t-l )1) 

so we get 

t car(dS-1(r»= t(d(t!)-d((l-l)!» = d(n!)-l 
,.2 ~2 
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ON THE SMARANDACHE FUNCTION AND 
THE FIXED - POINT THEORY OF NUMBERS 

by 

Albert A. Mullin 

This brief note points out several basic connections between the Smarandache 
function, fixed-point theory [1] and prime-number theory. First recall that fixed-point theory in 
function spaces provides elegent, if not short, proofs of the existence of solutions to many 
kinds of differential equations, integral equations, optimization problems and game-theoretic 
problems. Further, fixed-point theory in the ring of rational integers and fixed-lattice-point 
theory provide many results on the existence of solutions in diophantine theory. Here are four 
fundamental examples of fixed-point theory in number theory. (1) There is the well-known 
basic result that for p>4, p is prime iff S(p) = p. (2) Recall that the present author defined [2] 

the number-theoretic function '¥(n) as the product of the primes alone in the mosaic of n, 
where the mosaic of n is obtained from n by recursively applying the unique factorization 
theorem/fundamental theorem of arithmetic to itselfl Now the asymptotic density of fixed 
points of'¥(n) is 7/rr, just as the asymptotic density of square-free numbers is 6/rr. Indeed, 
(3) the theory of perfect numbers is also connected to fixed-point theory, since if one puts 
ftn) = 6(n) - n, where 6(n) is the sum of the divisors on n, then n is perfect iffftn) = n. Finally, 
(4) the present author defined [2] the number-theoretic function ,¥*(n) as the sum of the 
primes alone in the mosaic of n. Here we have a striking similarity to the Smarandache 
function itself (see example (1) above), since ,¥*(n) = n iffn = 4 or n = p for some prime p; 
i.e., if> 4, n is prime iff'¥*(n) = n. Thus, the distribution function for the fixed points of Sen) 
or of'¥*(n) is essentially the distribution function for the primes, TI(n). 

Problems 

(1) Put S2(n) = S(S(n» and define Sm(n) recursively, where Sen) is the Smarandache function. 
(Note: This approach aligns Smarandache function theory more closely with recursive 
function theory/computer theory.) For each n, determine the least m for which Sm(n) is 
pnme. 

(2) Prove that Sen) = S(n+3) for only finitely many n. 
(3) Prove that Sen) = S(n+2) for only finitely many n. 
(4) Prove that Sen) = S(n+l) for no n. 
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ON THE CALCULUS OF SMARANDACHE FUNCTION 

by 

C. Dumit.rescu ILDd C. Rocaoreanu 

(Vniver3ity of Craiova,Dept. of Math.,Craiova (I100),Rnrnaniu) 

Introduction. The Smara.ndache function S : N· - N· is defined [5] by the 
condition that. 5(n) is the smallest. integer m such tha.t m! is divisible by n.So,we 
have 5(1) = 1,5(212) = 16. 

Considering on the set N· two laticeal structures N = (N°, /\, v) and Nd = 
(N·, /\, ~),where /\ = min, V = max, /\= the grea.tLcst comlllon divuJOr, ~= th(~ 

d d 
smallest. common multiple,it results that 5 halt the followings properties: 

d 
("1) 5('1\ V '11) = S('1l) V.5'('11) 
(~1) 1'11 ~ci n1 ~ S(nd ~ S(71'J) 

where ~ iat the order in the lattice N and ~ci iH the order in t.he lattice N •. 1t lH 
said tbat 

. nl ~d n2 <==> nl dividE!!! n:z 

From these propertie1! we deduce that in fact on must c:olllli<i<>r 

S:Nd.-N 

Methods for the calculus of s. If 

is the decomposition of 11 inLO prilllell,froDl ("1) it relluilli 

S(n) = VS(pr') 

eo the calculus of S('1) is reduced to the calculutl of S(p"'). 

( I ) 

If e,.(n) is the exponent of the prime p ill the decol1lpol'litioll into prilll(,H of .t!: 
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, " (n) n! = II p' 
}=l ) 

by Legendre's formula i~ is said ~haL 

e,(n) = L: [~] 
I~l p' 

Also we have 

( ) 
_ n - C1(p)(n) 

e, n -
p-l 

(2) 

where [:r] is the integer pa.rt of x and C1(p){n) ill the Hum of digit.s of n ill the 
numerical scale 

(P) : 1 , P I p'l , ... , p' ... 

For ~he calculus of S(p") we need to consider in ILdditiuu a gt!llcraliaed lIuuu!r­
ical scale (P] given by: 

(P]: tll(P) , tl:l(p) , ... , rl,(p) I ••• 

where Cli(P) = (pi. - I)/(P - 1).Then in [3] it is showed that 

S(pQl) = p(Ct{pj)(p) (3) 

that is the value of S(pLl) i:J obta.iued multiplyillg p by the number obtain~d writing 
the exponent Ct in the genera.li8ed lica.le (P] and "rea.ding" iL in the U8Ua.!IiCa.!C (p). 

Let us observe that the calculus in the gencra..l.iHed "calc (P] ill C8HCutially dif­
ferent. from t.he calculus in t.he ecale (p).That. is becaulJe if we DoLe 

then for t.he usua.! 8ca.!e (P) it reaultll the rcclJ relll'C reiatiull 

b,,+l(P) = P . b,,(P) 

and for the generalised acale [P] we have 

~+l(P) = P . Clo&(P) + 1 

For Lhis,to add some numbers in the dcale (P] we do as follows: 
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1) We sian \0 add from the digits of "decimals" ,that is from the column 
corresponding to Cl'l (P). 

2) If adding some digit8 it is obtained Pfl'l(p),then we utilise an unit from the 
daslfe of "units" (the column correHpondillg Lo CLI (p» Lo ohLain p' r.J(p) + 1 = 
a3(p).Contiuuing to add,if aga.iuH it is obt.ained p. tl-l(p),thclI a new unit UJUHL 1)(' 
ueed from the claaae of uniLal,eLc. 

Ezampie. If 

then 
m+n+r = 442 + 

412 
44 

dcba 
To find the digits el, b, c, d we sta.rt to add from the column corresponciing to 

Cl'l(S ): 

4Cl'l(5) + ~(S) + 4~(5) = 5Cl'l(5) + 4Cl'l(5) 
Now,iI we ta.ke a.n unit from the first column we get: 

10 b = 4. 
CODiiDumg the addit.ion we have: 

4a3(5) + 4a3(5) + a3(5) = 5a3(5) + 4a3(5) 
and using a. Dew unit (from the first column) it results: 

4a3(5) + 4a3(5) + a3(S) + 1 = a.(5) + 4a3(5) 
10 c = 4 and d = 1. 

Finaly,adding the remained units: 

4al(6) + 2"1(5) = 5al(5) + "1(6) = 5al(6) + 1 = (VJ(5) 
it result. that the digit b = 4 must be cha.nged in b = 5 II.nd Il = O. 

So 
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m{6j + n{Sj + r{6) = 1450{s) = ~(5) + 4G3(5) + 5a2(5) 

Remarque. As it is showed in [5],writing a positive integer a in the scale (PJ 
we may find the first non-zero digit on the right equal8 to p.or course,that ill no 
possible in the standard scale (p). 

Let UI! ret.urn now 1.0 t.he prcllcnt.at.io/1 of t.he forlllUliU! for 1.11(' calculuH of Lill' 

Smarandache (unct.ioll. For t.hil! we (·xpreI!Ht· t.he expollellt. cr ill bot.h t.lw ItCjLlc~H (T') 

and (p): 

and 

" _ " + ,,-1 + + _" • a(p) - C.P C,,-lP ... + CIP CO - L c,p 
i:O 

" aCFl = k"Gv(P) + k,,-lGv-l(P) + ... + k1G1(P) = E kjaj(p) = 
1=1 

• 
=" k·E!..=l '- J p-l 

1-1 

" " 
(p - l)a =2: kjpJ- L kj 

" . 
8o,becau8e r: kjpJ = p(t~{P)(,), we get: . ,-1 

From (4) we deduce 

• v 

pa =2: C.(P,+l - 1)+ 2: c, 
;:0 ,=0 

and 

Coneequently 
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Replacing this expression of a in (6) we get.: 

(p- 1)' p - 1 
S(pa) = (C<(p»(pJ + -O'(p)(Ct') + O'(pJ(ct) 

p p 
(8) 

Example.To find S(3&9) we shall utilise ~he equali~y (3).For t.his we have: 

(3) : 1 I 3 I 9 , 27 , 81 , ... 
(3] : 1, 4 , 13 , 40, 121 , ... 

and 89(3\ = 2021,80 S(3S!)) = 3(2021)c3) = 183.1'hat is 183! is divi.olible by 3S!) and 
it is the smallest factoria.l with thi~ property. 

We shall use now Lhe equalit.y (6) t.o calculat.e ~he same value S(38!).For thil! 
we observe .. hat. 0'[3](89) = 5 and, 110 S(319 ) = 2 . 89 + 5 = 183. 

Using (8) we get 89{~) = 10022 and : 

4 2 
S(389) = 3(10022)rJJ + 3 . 5 + 5 = 183 

Ii. is p088ible to expresse S(pQ) by mins of the exponent e,(Q!) in t.he following 

way: from (2) and (7) it results 

e,(a) = {Ct'(p»(pJ - a 

and then from (8) and (9) it results 

(9) 

(p - 1)2 P - 1 
S(pa) = (e,(OI) + a) + -O'(p)(OI) + 0'(P1(0-) (10) 

P P 
Remarque.From (3) and (8) w(' deduce a connect.ion bciwt"en til(' int,(!g('r , ... 

writen in the scale (PJ i\.IIO rCl\(ico in the Hcal,· (f!) ;"'Iel til(' "alII I' int,rJ!.,·r writ.rd ill 

t.he scale (p) iLlld rea.ded ill t.he IiCall! [Pl. N'Llndy 

p2(a(pj)(p) - (p - 1)2(0I(p»(pj = PO'(pj(OI) + (p - 1)0'(1')(01) (11) 

The function i,(OI). In the followings let. we not.e S(pa) = S,(OI).Theu from 
Legendre's formula it. result.s: 

(p - 1)a < Sp(a) =s pc< 

thai. is S(pQ) = (p - 1)01 + :z: = pa - y. 
From (6) it reault.a that :z: = 0'(p1(0I) and to find y let us write S,(OI) under the 

forme 



S,(cr) = p(cr - i,(cr» ( 12) 

Aa il ia abowed in [4] we have 0 ~ i,(O') ~ [0.;1 J. 
Then it result.s that for each function S, there exiHLH a function i, 1.10 that WI: 

have the linear combination 

In [I} it is proved that 

~S,(cr) + i,(cr) = 0' 
P 

( 13) 

(14) 

and 10 it is an evident analogy between the expression of e,( 0') given by tht­
equality (2) and the expression of ip(o-) in (14). 

In [1] it is also showed that 

0( = (0([,1)(,) + [~] _ (W(O')] = (O'[,J)(,) + 0' - 0'[,1(0') 
P P P 

and 10 

(15 ) 

Finaly,let us obeerve that from the definition of Smarandache fUllction it results 
tha.t 

0-
(S, 0 e,)(o-) = p[-] = 0- - a, 

p 

where o-p is the remainder of cr modulus p.Alao we have 

(<<,0 S,)(O() ~ 0( and «,(5,(0') - 1) < 0' 

BO using (2) it results 

S,(a) - O'(p)(S,(<.~» > .1 S,(<.~) - 1 - t1(p)(S',,(lY) - J) 
-- (~ allu - < ~~ 

p-l - p-l 

Using (6) we obtains that S(p'-) is the unique solution of the aYlltcm 
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O'(P}(Z) :£ O'lP!(a) :£ O'(p){X - 1) + 1 

The calculus of card(S-l (n) ).Let. qll qll "'1 qlt. be all t.he prime it.egera IIma.ll­
es1. 1.hen n a.nd non dividing n. LeI. also denoLe shortly e"/(n) = IrA soluLion Xo 

of 1.he equaUon 

S(x) = n 

has the property that. Xo divides n! a.nd non divides (n - l)!.Now, if d(n) is the 
number of p08it.ive divisors of n,from t.he inclusion 

{m / m divides (n - I)!} C {m / m divides n!} 

a.nd using t.he definit.ion of Smara.ndache function it. results t.ha! 

card(S-l(n)) = d(n!) - d«n - I)!) ( 16) 

Ezample. In [6] A. St.upuu a.nd D. W. Sharpe hu proved t.haL it p ia a given 
prime,t.be equauon 

S(=) = p 

has just d(P -I)!) solutiolls (all of t.hem in bet.ween p aud p!) . Lt,t. us observe t.hat 
e,(p!) = 1 and e,«p - I)!) = 0,80 because 

d(P!) = (e,.(p!) + 1)(11 + 1)(f2 + 1) ... (/h + 1) = 2(f1 + l)(h + 1) ... (f1t. + 1) 
d((p -1)!) = (f1 + l)(h + 1) ... (f~ + 1) 

it results 

card(S-l(P!» = d(P!) - d«P - 1)! = d«p - 1)!) 
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THE FIRST CONSTANT OF SMARANDACBE 

by 

Ion Cojocaru and Sonn Cojocaru 

In this note we prove that the series f S(I)1 is convergent to a real number s e (0.717 • 
.,.2 n. 

1.253) that we call the first constant constant of Smarandache. 

It appears as an open problem, in [1], the study of the nature of the series f S(1 )1. We 
.,.2 n. 

can write it as it follows : 

1 1 1 1 1 1 2 4 8 14 - + - + - + - + - + ... = - +-+ -+ - + -+ ... = 
2! 3! 4! 5! 3! 2! 3! 4! 5! 6! 

= f a(~) , where a(n) is the number of the equation Sex) = n, n e N, n ~ 2 solutions. 
_2 n. 

It results from the equality Sex) = n that x is a divisor ofn!, so a(n) is smaller than den!). 

So, a(n) < d(n!). (1) 

Lemma 1. We have the inequality : 

d(n) :5 n - 2, for each n e N, n ~ 7. (2) 

Proof. Be n = P ~1 p;2 ... P:" with P1 • P1' ... , Ilk prime ~umbers, and a, ~ 1 for each i e 

e{ 1, 2 •... , k}. We consider the function f: [1, 00) ~ R. £(x) = aX - x - 2, a ~ 2, fixed. It is 

derivable on [1, 00) and f(x) = aX In a-I. Because a ~ 2, and x ~ 1 it results that aX ~ 2, so 

aX In a ~ 2 In a = In al ~ In 4 > In e = 1, i.e., f(x) > 0 for each x e [1, 00) and a ~ 2, fixed. But 

£(1) = a - 3. It results that for a ~ 3 we have £(x) ~ 0, that means all ~ x + 2. 

Particularly, for a = Pi' i e {1, 2, ... , k}, we obtain p~ ~ aj + 2 for each Pi ~ 3. 

Ifn = 2", s e N*, then den) = s + 1 < 2" - 2 = n - 2 for s ~ 3. 

So we can assume k ~ 2, i.e. P: ~ 3. It results the inequalities : 

118 



equivalent with 

(3) 

Multiplying, member with member, the inequalities (3) we obtain: 

p~1 (p;l _ 1) ... (p~k - 1) ~ (al + 1)(a2 + 1)·· ·(ak + 1) = den). (4) 

Considering the obvious inequality : 

al (pal &t n - 2 ~ PI 2 - 1)··· (Pk - 1) (5) 

and using (4) it results that : 

n - 2 ~ den) for each n ~ 7. 

Lemma 2. den!) < (n - 2)! for each n E N, n ~ 7. (6) 

Proof. We ration trough induction after n. So, for n = 7, 

d(7!) = d(2·· 32 
• 5 . 7) = 60 < 120 = 5!. 

We assume that den!) < (n - 2)!' 

d«n+l)!) = d(n!(n + 1» $ d(n!)· den + 1) < (n - 2)! den + 1) < (n-2)! (n - 1) = (n - I)! , 

because in accordance with Lemma 1, d( n + 1) < n - 1. 
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Proposition. The series I _I - is convergent to a number s E (0.7 i 7, 1.253). that we 
n=2 S(n)1 -

call the first constant constant of Smarandache. 

Proof. From Lemma 2 it results that a(n) < (n - 2)!, so a~~) < n(n ~ 1) for every n E N, 

ee 1 ~ a(n) .., 1 
n~7andI --= 2.. -+ I --. 

n=2 Sen)! n=2 n! n=7 (n - 1) 

Therefore f S(I) <.1. + 1.. + .1. + 1. + li + f -2-
1 - . 

n=2 n 1 2! 3! 4! 5! 6! n=7 n -n 
(7) 

a:: 1 
Because I -~-- = 1 we have : it exists the number s > 0, that we call the 

n=2 n- - n 

Smarandache constant S = 
I 

From (7) we obtain: 

r-
n=2 S(n)!· 

+_1_ + ----1- = 751 _2 = 451 < 1 253. 
52 - 5 62 - 6 360 6 360 ' 

But, because Sen) s; n for every n E N*, it results: 

.., 1 .., 1 
I S( )1 ~ II" = e - 2. 

11"'2 n. _2 n. 

Consequently, for this first constant. we obtain the framing e - 2 < S < 1,253, 

i.e., 0,717 < s < 1,253. 
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THE SECOND CONSTANT OF SMARANDACBE 

by 

Ion Cojocaru and Sorin Cojocaru 

In the present note we prove that the sum of remarcable series r SI~I, which implies the 
a22 a. 

Smarandache function is an irrational number (second constant of Smarandache l. 

Because Sen) $ n, it results r SI~} $ r +)'. Therefore the serie r SI~} is convergent to a 
~ D. ~ (II- . ~ D. 

numberf 

Proposition. The sum f of the series-r ~~) is an irrational number. 
u2 . 

Proof. From the precedent lines it results that lim ± SI~) =f Against all reson we assume 
a-.c i=2 D. 

that f e Q, f> o. Therefore it exists a,b eN, (a,b) = 1, so that f=;. 

Let p be a fixed prime number, p > b, P ~3. Obviously, .!. = r S(,i) + r SI,i) which leads to: 
b .. 2'. ~ •. 

(p-I)!. _ ~ tp-ll!Sli) ~ tP-I.)!Sli) ---k--+.,.--b . ., I! t! '"- .~ 

Because p > b it results that tP-~)!' e Nand! (P-I~!S(i) e N. Consequently we have 
i=2 • 

~ (p-Il!Sli) N t "-- -.-1 - e 00. 
~ 

B ~ tp-ll'Slil S hi· e a. = k --,.- eN. 0 we ave the re anon .. 
~ 

(p-ll!Slpl tp-ll·Stp~1l (p-Il!Slp-21 
0.= ---- - -p~ tp-ll~ tp-lll 

Because p is a prime number it results S(p) = p. 

So 

(1) 
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We know that S(p+i.) sp+i. (V')i ~ 1, with equality only if the number p +i is prime. 

Consequently, we have 

(2) 

From the inequalities (1) and (2) it results that 1 < a < 2, impossible, because a E N. The 

proposition is proved. 
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THE THIRD AND FOURTH CONSTANTS OF SMARANDACBE 

by 

Ion Cojocaru and Sorin Cojocaru 

In the present note we prove the divergence of some series involving the Smarandache 

function, using an unitary method, and then we prove that the series 

"" 1 
~ S(2)S(3) .... S(n) 

is convergent to a number s E (711100, 1011100) and we study some applications of this series 

in the Number Theory (third constant of Smarandache). 

The Smarandache Function S : N* -+- N is defined [1] such that S(n) is the smallest 

integer k with the property that k! is divisible by n .. 

Proposition 1. If ( xn )n ~ I is a strict increasing sequence of natural numbers, then the 

senes: 

(1) 

where S is the Smarandache function, is divergent. 

Proof. We consider the function f: [xn, x...1 ] ~ R., defined by f(x) = In In x. It fulfils the 

conditions of the Lagrange's theorem of finite increases. Therefore there is cn E (x" , x... I ) such 

that: 

(2) 

Because xn < en < x .... ' we have: 

X_I - Xn 1 I 1 1 . X_I - Xn ("-')n E N, < n nXn+l - n nXn < 1 ' v 
xn+lln Xn+l Xn n x" 

(3) 

if Xn ;: 1. 
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We know that for each n E N* \ { I:. S~n) ~ I. i.e. 

o < S(n) < _1_ 
nlnn - Inn' 

(4) 

from where it results that lim Sen) = o. 
n_CI nlnn Hence there eXIsts k > 0 such that 

S(n) < k Sen) 
nlnn ' I.e., ninn > -k- for any n E N*. so 

(5) 

Introducing (5) in (3) we obtain: 

(6) 

Summing up after n it results: 

Because lim Xm = ;x, we have 
m-c 

lim In In Xm = a::, i.e., the series: 
m_ 

is divergent. The Proposition 1 is proved. 

Proposition 2. Series ~ sIn)' where S is the Smarandache function. is divergent. 

Proof. We use Proposition 1 for xn = n. 

Remarks. 1) If XII is the n - th prime number, then the series f X'SI( - )Xn is divergent. 
",,\ Xn 

2) If the sequence (~)" ~ I forms an arithmetical progression of natural numbers, then 

the series t S(1 ) is divergent. 
""I Xn 

3) The series t. S(2~ + 1)' ! S(4~ + 1) etc., are all divergent. 
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In conclusion. Proposition I offers us an unitary method to prove that the series having 

one of the precedent aspects are divergent. 

Proposition 3. The series: 

'" 1 .E 5(2)· S(3)·· ,S(n)' 

where S is the Smarandache function, is convergent to a number s E (711100, 1011100). 

Proof. From the definition of the Smarandache function it results S(n):;:; n!, 

('of)n E N*'{ 1 }, so S~n) ~ ~!' 

Summing up, begining with n =: 2 we obtain: 

'" 1 '" 1 2: > 2: - = e-2 
_2 S(2)· 5(3)·· ·5(n) - _2 n! . 

The product 5(2) . 5(3) ... 5(n) is greater than the product of prime numbers from the 

set {I, 2, ... , n}, because S(p) =: p, for p =: prime number. Therefore: 

1 < _I_ 
n Ie U 5(i) D Pi 

(7) 

where p" is the biggest prime number smaller or equal to n. 

There are the inequalities : 

5 - f 1 = --1- + 1 + 1 + ... + 
- _2 S(2)5(3)·· -S(n) S(2) S(2)S(3) 5(2)S(3)S(4) 

+ 1 + ... <1+..2..+ 2 + 4 + 
5(2)S(3)·· ·5(k) 2 2·3 2·3 . 5 2·3·5·7 

2 Pk+\ - Pk + + .. , + +... (8) 
2·3.5·7.11 _ PIPZ"'Pk . 

Using the inequality P \ PZ ... Pk > P~+l' Mk ~ 5 [2], we obtain : 
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S < 1 + 1 + _1 + -L + _1 + _1 + ... + _1_ + ... 
2 3 15 105 p~ p; P~+I 

(9) 

1 1 We note P = - + - + ... 
2 2 

1 1 1 and observe that P < - + - + - + ... 
13 2 142 15 2 P6 p, 

It results: 

P < 1t2 _ (1 ___ 1 ___ 1 + ... + _1_1 
6 22 3 2 122 )' 

where 

1t2 1 1 1 - = 1 + - + - + - + ... (EULER). 
6 22 32 42 

Introducing in (9) we obtain: 

1 1 1 2 1t2 1 1 1 5 <-+-+-+-+--1----- ... _-
2 3 15 105 6 22 32 122 ' 

Estimating with an approximation of an order not more than ~, we find : 
10 

.., 1 
0, 71 <~ 5(2)5(3) ... 5(n) < 1,01. 

The Proposition 3 is proved. 

(10) 

Remark. Giving up at the right increase from the first terms in the inequality (8) we can 

obtain a better right framing : 

~ 1 < 0 97 
~ 5(2)5(3)··· Sen) ,. 

(11) 

Proposition 4. Let a be a fixed real number, a ~ L Then the series 

~ 5(2)5(;)~ ... 5(n) is convergent (fourth constant of Smarandache) . 

Proof. Be (Pk )1:21 the sequence of prime numbers. We can write: 
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5(2) 

3(1 3(1 
5(2)5(3) = PIP: 

4(1 4(1 p~ 
--~-- < -- < --5(2)5(3)5(4) PIP: PIP: 

5(1 5(1 
5(2)5(3)5(4)5(5) < PIP:P3 

6(1 6(1 
5(2)5(3)5(4)5(5)5(6) < PIP:P3 

n(1 (1 p(1 __ -..:..:.. ___ < n < k+1 

5(2)5(3)···5(n) PIP:'" Pk PIP:'" Pk' 

where P, ~ n., i e {I •...• k}, Pk+1 > n. 

Therefore 

Then it exists ~ E N such that for any k ~ leo we have: 

(1+3 
PIP:'" Pk > Pk+i' 

Therefore 
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too. 

Because the series I + is convergent it results that the given series is convergent 
kHo Pk+1 

Consequence 1. It exists Ilo E N so that for each n ~ Ilo we have S(2)S(3) ... Sen) > nel
• 

Proof. Because ~ S(2)S(;; ... Sen) = 0, there is Ilo E N so that 

na 
~ < 1 for each n ~ no. 

5(2)5(.) ... Sen) 

Consequence 2. It exists Ilo E N so that: 

a 
S(2) + S(3) + ... + Sen) > (n - 1) . n~ for each n ~ no. 

Proof. We apply the inequality of averages to the numbers S(2), S(3), ... , Sen) : 

a 

S(2) + S(3) + ... + Sen) > (n-l) ·-~S(2)S(3) ... Sen) > (n-l)n~, V'n ~ no. 
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A PARADOXICAL ~ICIAN: HIS FUNCTION, PARADOXIST 
GEa€TRY, AND CLASS OF PARADOXES 

by Michael R. Mudge 

Described by Char.lt:!s T. Le, Bul..letin of Numl::er Theory, vo.l.3, No.1, 

March 1995,as "The most paradoxist mathematician o~ the world" 

FLORENTIN SM.lUt.~ACHE was born on December loth, 1954, in Ba.lcesti 

(a large vi.l.lage), Va.lcea, Romania o~ peasant stock. A very hard 

and socia.lly deprived chi.ldhcod led to a period o~ eccentric 

teenage behaviour, he was c.lose to being expell.ed ~rom his hiqh 

school. in Craiova for disciplinary reasons. Eventua.ll.y, however, 

a period of university studies, 1974-79, resul.ted in the recognition 

of mathematical bri.l.liance by the pro~essor of algebra, Alexandra 

Dinca. Florentin general.ised Euler's Theorem from. 

If (a,m) = 1, then aP (m.) .= 1 (mod m) to. 

If (a,m) = d , then a f(m.s + s} = as (mod m) where ms divides 
s -

m and s is the number of steps to get ms. 

An industrial. appointment from 1979 to 1981 was disastrous, 

ending in dismissal. ~or disciplinary reasons. In 1986 an apparent.ly 

success~u.l teaching appointment was termina~ed by the Ceausescu 

dictatorship and two years of unemployment foll.owed. In 1988 an 

i.l.leqal. escape ~rom Romania through Bu.lgaria resu.l ted in t~ years 

in a TUrkish refugee camp, where much time was spent as a drunken 

vagrant. 

Many mathematicians and writers l.obbied the United Nations 

commision ~or Re~ugees,based in Rome, and exile to the United 

Stat~s fo.l.lowec in 1990. .\5 a ~mber of the American Matha~tica.l 

Society since 1992 and of the Romanian Scientists Association 

(Bucharest) since 1~93 and a reviewer ~or the Number Theory to 

Zantralblatt ~Ur Mathematik scores of pub1ications and four 

books bear the name of Smarandache, publishing in Eng.lish. French 

and his native Romanian. 
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The Smarandache Function. Sen). is ~efined for positive integer 

argument only as the smallest integer such t~At Sen)! is divisible 

by n~ (tl:e ~xtension to other real/complex a~ent has not. yet, 

been investigated). 

The Smarandache Quotient, Q{n), is de~ined to be S(n)!/n. 

Limited tabulation of both ~unctions appears in The Encyclopedia 

of Integer Sequences by N.J.A.Sloane & Simon Plouffe. Academic 

Press, 1995. M1669 & M0453. 

There exists an extensive literature dealing with properties 

o~ these ~unctions; "An I~ini ty o~ Unsolved Problems Concerning 

a Function in NUmber Theory". Smarandache Function Journal, 

vel.l •• No.1. December 1990. pp12 - 55. ISSN 1053-4792. Number 

Theory Publishing Company. P.o. Box 42561. Phoenix. Arizona 85080, 

USA providing an ideal starting point ~or interested readers. 

A recent paper by Charles Ashbacher. Mathematical Spect.rum. 

1995/96. vel.28 •• No.1. pp20-21 addresses the question o~ when 

the Smarandache Function satisfies a Fibonacci recurrence relation. 

i.e. Sen) a S{n-l) + S(n-2). Empirical evidence is ~or '~ew' 

occasions the largest known beinq n a 41566~. Are there infitely many? 

A Paradoxist Geometry. In 1969. at the age of 15. ~ascinated by 

geometry. Florentin Smarandache constructed a partially Euclidean 

and partially non-BlIclidean geometry in the same space by a 

strange replacement o~ the auclid's fi~th postulate (the axiom of 

paralells) with the ~ollowing ~ive-statement propositions 

a) there are at least a straight linC! and an exterior point to it in 

this space ~or which only one line passes through the point and does 

not intersect the initial line, 

b) there are at least a straight line and an exterior point to it 

in this space ~or which only a ~inite number of lines. say kb 2. 

pass through the point and do not intersect the initial line; 

c)there are at least a straight line and an exterior ~oint to it 

in this space for which any line that passes through the point 

intersects the initial line: 

d)there ar9 at least a straight line and an ext~rior point to it 

128 



in this space for which an infinite number of lines that pass 

through the point (but not all of them) do not intersect the 

initial line; 

e)there are at least a straight line and an ~~terior point to it 

ih this space for which any line that passeee through the point 

does not intersect the initial lin3. 

Does there exist a model for this PARADOXIST GEOME'l'RY? If net 

can a contradiction be found using the above set of propositions 

together with Euclid's remaining Axioms? 

Smarandache Classes of Paradoxes. Contributed by Dr.Charles T.Le, 

Erhus University, Box 10163, Glendale, ARIZONA 85318. USA. 

Let @ be an attribute and non~ its neqation. 

Thus if @ means • possible , then non-@ means 'impossible'. 

The original set of Smarandache Paradoxes are I 

ALL is oo@ .. , TRi:: ooNON~oo TOO. 

ALL IS ooNON-@oo, THE "@" TOO. 

NOTHING IS oo@oo, NOT EVEN oo@oo. 

These three kinds of paradox are mu.tua11y equivalent and red\lCe to I 

PA...~OXI ALL (verb) '"@oo, THE ooNON~oo TOO. 

See Florentin Smarandache, "Mathematical Fancies &. Paradoxes", paper 

presented at the Eugene Strens Memorial on Intuitive and Recreational 

Mathematics and its History, University of Calgary, Alberta, 

Canada, July 27 - August 2, 1986. 

8/10/95 

Further Readinq: 

Only Problems. Not Solutions!, Florentin Smarandacha, xiquan 

publishing HOuse, 1993 (fourth edition)} ISBN- 1-879585-00-6. 

Some Notions and Questions in NUmber Theory, c.Dumitresc:u &. V.Seleac:u, 

Ehrus University Press, Glendale.1994, ISBN 1-879585-48-0. 
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Smarandache - Fibonacci Triplets 

H.lbstcdl 

We recall the definition of the Smarandache Function S(n): 

S(n) = the smallest positive integer such that S(n)! is divisible by n. 

and the Fibonacci recurrence formula: 

which for F 0 = F 1 = 1 defines the Fibonacci series. 

This article is concerned with isolated occurrencies of triplets n, n-l, n-2 for which 
S(n)=S(n-l)+S(n-2). Are there infinitly many such triplets? Is there a method of finding 
such triplets that would indicate that there are in fact infinitely many of them. 

A straight forward search by applying the definition of the Smarandache Function to 
consecutive integers was used to identify the first eleven triplets which are listed in table 1. 
As often in empirical number theory this merely scratched the surface of the ocean of 
integers. As can be seen from diagram 1 the next triplet may occur for a value of n so large 
that a sequential search may be impractical and will not make us much wiser. 

Table 1. The first 11 Smarandache-Fibonacci Triplets 

# n Stn) S(n-1) S(n-2) 

1 11 11 5 2*3 
2 121 2*11 5 17 
3 4902 43 29 2*7 
4 26245 181 18 163 
5 32112 223 197 2*13 
6 64010 173 2*23 127 
7 368140 233 2*41 151 
8 415664 313 2*73 167 
9 2091206 269 2*101 67 

10 2519648 1109 2*101 907 
11 4573053 569 2*53 463 

However, an interesting observation can be made from the triplets already found. Apart 
from n=26245 the Smarandache-Fibonacci triplets have in common that one member is two 
times a prime number while the other two members are prime numbers. This observation 
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leads to a method to search for Smarandache-Fibonacci triplets in which the following two 
theorems play a role: 

I. IT n=ab with (a,b) = 1 and S(a) <S(b) then S(n)=S(b). 

II. IT n = pa where p is a prime number and ~ p then S(pa) = ap. 

The search for Smarandache-Fibonacci triplets will be restricted to integers which meet the 
following requirements: 

n = xpa with ~p and S(x)<ap 

n-1 = yqb with b5q and S(y)<bq 

n-2 = zrC with csr and S(z)<cr 

(1) 

(2) 

(3) 

p,q and r are primes. We then have S(n)=ap, S(n-1)=bq and S(n-2) = cr. From this and by 
subtracting (2) from (1) and (3) from (2) we get 

ap = bq + cr 

xpa _ yqb = 1 
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TABLE 2. Smarandache - Fibonacci Triplets_ 

# N SeN) SeN-1) SeN-2) t 

1 4 4 * 3 2 * 0 
2 11 11 5 6 * 0 
3 121 22 * 5 17 0 
4 4902 43 29 14 * -4 
5 32112 223 197 26 * -1 
6 64010 173 46* 127 -1 
7 368140 233 82* 151 -1 
8 415664 313 167 146 * -8 
9 2091206 269 202 * 67 -1 

10 2519648 1109 202 * 907 0 
11 4573053 569 106 * 463 -3 
12 7783364 2591 202 * 2389 0 
13 79269727 2861 2719 142 * 10 
14 136193976 3433 554 * 2879 -1 
15 321022289 7589 178 * 7411 5 
16 445810543 1714 * 761 953 -1 
17 559199345 1129 662 * 467 -5 
18 670994143 6491 838 * 5653 -1 
19 836250239 9859 482 * 9377 1 
20 893950202 2213 2062 * 151 0 
21 937203749 10501 10223 278 * -9 
22 1041478032 2647 1286 * 1361 -1 
23 1148788154 2467 746 * 1721 3 
24 1305978672 5653 1514 * 4139 0 
25 1834527185 3671 634 * 3037 -5 
26 2390706171 6661 2642 * 4019 0 
27 2502250627 2861 2578 * 283 -1 
28 3969415464 5801 1198 * 4603 -2 
29 3970638169 2066 * 643 1423 -6 
30 4652535626 3506 * 3307 199 0 
31 6079276799 3394 * 2837 557 -1 
32 6493607750 3049 1262 * 1787 5 
33 6964546435 2161 1814 * 347 -4 
34 11329931930 3023 2026 * 997 -4 
35 11695098243 12821 1294 * 11527 2 
36 11777879792 2174 * 1597 577 6 
37 13429326313 4778 * 1597 3181 1 
38 13849559620 6883 2474 * 4409 1 
39 14298230970 2038 * 1847 191 7 
40 14988125477 3209 2986 * 223 2 
41 17560225226 4241 3118 * 1123 -2 
42 18704681856 3046 * 1823 1223 4 
43 23283250475 4562 * 463 4099 -10 
44 25184038673 5582 * 1951 3631 -2 
45 29795026m 11278 * 8819 2459 0 
46 69481145903 6301 3722 * 2579 3 
47 107456166733 10562 * 6043 4519 -1 
48 10m2646054 8222 * 6673 1549 -1 
49 122311664350 20626 * 10463 10163 0 
50 126460024832 6917 2578 * 4339 11 
51 155205225351 8317 4034 * 4283 -5 
52 196209376292 7246 * 3257 3989 -5 
53 210621762776 6914 * 1567 5347 11 
54 211939749997 16774 * 11273 5501 0 
55 344645609138 7226 * 2803 4423 9 
56 484400122414 16811 12658 * 4153 -1 
57 533671822944 21089 18118 * 2971 0 
58 620317662021 21929 20302 * 1627 0 
59 703403257356 13147 10874 * 2273 -2 
60 859525157632 14158 * 3557 10601 -5 
61 898606860813 19973 13402 * 6571 1 
62 972733721905 10267 10214 * 53 -4 
63 1185892343342 18251 12022 * 6229 -2 
64 1225392079121 12202 * 9293 2909 -4 
65 1294530625810 17614 * 5807 11807 -3 
66 1517767218627 11617 8318 * 3299 -8 
67 1905302845042 22079 21478 * 601 -1 
68 2679220490034 11402 * 7459 3943 11 
69 3043063820555 14951 12202 * 2749 5 
70 6098616817142 24767 20206 * 4561 2 
71 6505091986039 31729 19862 * 11867 2 
72 13666465868293 28099 16442 * 11657 7 
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Smarandache-Fibonacci Triplets. H. Ibstedt 

The greatest common divisor (pa, qb)= 1 obviously divides the right hand side of (5). This 
is the condition for (5) to have infinitely many solutions for each solution (p,q) to (4)_ These 
are found using Euclid's algorithm and can be written in the form: 

(5') 

where t is an integer and (Xo.Yo) is the principal solution. 

Solutions to (5') are substituted in (6') in order to obtain integer solutions for z. 

(6') 

Solutions were generated for (a,b,c)=(2,I,I), (a,b,c)=(1,2,1) and (a,b,c)=(I,I,2) with the 
parameter t restricted to the interval -11 =:; t =:; 11. The result is shown in table 2. Since the 
correctness of these calculations are easily verfied from factorisations of S(n), S(n-l), and 
S(n-2) these are given in table 3 for two large solutions taken from an extension of table 2. 

Table 3. Factorisation of two Smarandache-Fibonacci Triplets. 

n= 16,738,688,950,356 = 22.3-3H93·15.26f S(n) = 2-15.2f22 
n-1= 16,738,688,950,355 =5-197-1,399-1,741-6.977 S(n-1)= f2.977 
n-2= 16,738,688,950,354=2-72-19-23-53-313-23.561 S(n-2)= 23_561 

n= 19,448,047,080,036=22.3~32.17.0932 S(n) = 2-17.093 
n-1= 19,448,047,080,035 =5-7-19-37-61-761-17.027 S(n-1)= 17.Q27 
n-2= 19,448,047,080,034 = 2-97-1,609-3,63H7. 159 S(n-1)= 1Z.152 

Conjecture. There are infinitely many triplets n, n-1, n-2 such that S(n)=S(n-1)+S(n-2). 

Questions: 
1. It is interesting to note that there are only 7 cases in table 2 where S(n-2) is two times 
a prime number and that they all occur for relatively small values of n. Which is the next 
one? 
2. The solution for n = 26245 stands out as a very interesting one. Is it a unique case or is 
it a member of family of Smarandache-Fibonacci triplets different from those studied in this 
article? 

References: 
C. Ashbacher and M_ Mudge, Personal Computer World, October 1995, page 302_ 

M_ Mudge, in a Letter to R_ Muller (05/14/96), states that: 
"John Humphries of Hulse Ground Farm, Little Faringdo, 
Lechlade, Glovcester, GL7 3QR, U.K., has found a set of 
three numbers, greater than 415662, whose Smarandache 
Function satisfies the Fibonacci Recurrence, i.e. 
S(2091204) = 67, S(2091205) = 202, S(2091206) = 269, 
and 67 + 202 = 269. 
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THE SOLUTION OF SOME DIOPHANTINE EQUATIONS 
RELATED TO SMARANDACHE FUNCTION 

by 

Ion Cojocaru and Sorin Cojocaru 

In the present note wesolve two diophantine eqations concerning the Smarandache 

function. 

First, we try to solve the diophantine eqation : 

Sex>') = y' (1) 

It is porposed as an open problem by F. Smarandadie in the work [I], pp. 38 (the 

problem 2087). 

Because SCI) = 0, the couple (1,0) is a solution of eqation (1). If x = 1 and y ~ 1, the 
eqation there are no (IS) solutions. So, we can assume that x ~ 2. It is obvious that the couple 

(2,2) is a solution for the eqation (I). 

If we fix y = 2 we obtain the equation Sex:) = 2" . It is easy to verify that this eqation 

has no solution for x e {3,4}, and for x ~5 we have 2" > x= ~S(X=), so 2" > Sex:). Consequently 
for every x eN- \{2}, the couple (x,2) isn't a solution for the eqation (1). 

We obtein the equation S(2)') = i, y ~3, fixing x = 2. It is know that for p = prime 

number we have the ineqality: 

S(PJ ~p.r (2) 

Using the inequality (2) we obtein the inequality S(2') ~2.y. Because y ~3 implies i>2y, 
it results i>S(2y) and we can assume that x ~3 and y ~3. 

We consider the function f: [3,CX)]- R: defined by f(x) =.::, where y ~ 3 is fixed. 

This function is derivable on the considered interval, and f(x) = V·'''"'f~I.Y-VI. In the point .. , 
x =.L it is equal to zero and f(x \ = f(~) = y;;(Iny)Y. 

OlDY 'oJ IDY 

Because y ~ 3 it results that lny> 1 and y~' > 1, so f(xJ > 1. For x> xo ' the function fis 
strict incresing, so f(x) > f(xJ > 1, that leads to i' > xy ~ Sex'), respectively i' > Sex'). For 

x < x.,. the function fis strict decreasing, so f(x) > f(xJ> 1 that lands to y'< > Sex'). There fore, 

the only solution of the eqaution (I) are the couples (1,0) and (2,2). 
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SOL VING THE DIOPHANTINE EQUATION 

x~-y = S(x) (3) 

It is obvious that the couples (l,I) is a solution of the eqaution (3). 

Because xY_y' = Sex) it results x ;c y (otherwise we have S(x)=O, i.e., x = 1 = y). We 

prove that the equation (3) has an unique solution. 

Case I: x> y. Therefore it exists a eN" so x = y + a, (y + aY - r = S(y+a) or 

(l + })Y - )'" = Si;~al . But (l +} Y < ea. It results e" - )'" > Si;~al , false inequality for y > e (e" - y"< 0 

for y > e). So we have y = I or y = 2. If y = 1 we have x-I = Sex). In this situation it is 

obvious that x is a compound number. If x = P ~' p;' ... p:" is the factorization of x into prims 

wich Pi ;c P
J 

' a, ~ 0 , ij = l,"ii, then we have Sex) = = s(p~) = S(p!").l S eSt. But, because 

S(x) = s(p!") < pe:le < x-I it results that Sex) < x-I, that is fals. 

Ify = 2, we have x? - 2" = Sex). For x ~ 4 we obtein x? -.'1' < 0, and for x e {2,3} there is 

no solution. 

Case II: x < y. Therefore it exists b > 0 such that y = x + b. Then we have 

x-'--o -(x+b )x=S(x), so xb 
- (1 + ~ y = ~:l S ;. S 1. 

But, because (1 +~ )" < eb we obtain xb 
- eb < 1, which is a false inequality for x ~ 4. If 

x = 2. then 21 -i = 2, an equation which fas no solution because 21 - i ~ 7 for y ~ 5. 
Ifx = 3. then 3:"-! = 3, an equation which has no solutions for y e {1.2,3}, because, if 

y ~4 it results 3Y - -I ~ 17. 

Therefore the equation (3) admits an unique solution (1,1). 

REFERENCES 

[1] F. Smarandache : An infinity of unsolved problems concemi11g a FU11ction in the 

Nlimber Theory (Presented at the 14th American Romanian Academy Anual cOnvention, hold 

in Los Angeles, California, hosted by the University of Southern California, from April 20 to 

April 22, 1989 ). 

DEPARTMENT OF MATHEMATICS 

UNIVERSITY OF CRAIOVA. CRAIOVA 1100, ROMANIA 
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Problems 

Edited by 

Charles Ashbacher 
Decisionrnark 

200 2nd Ave. SE 
Cedar Rapids, IA 52401 
FAX (319) 365-5694 

e-maiI7I603.522@compuserve.com 

Welcome to the inaugural version of what is to be a regular feature in Smarandache 
Notions! Our goal is to present interesting and challenging problems in all areas and at all 
levels of difficulty with the only limits being good taste. Readers are encouraged to submit 
new problems and solutions to the editor at one of the addresses given above. All solvers 
will be acknowledged in a future issue. Please submit a solution along with your proposals 
if you have one. If there is no solution and the editor deems it appropriate, that problem 
may appear in the companion column of unsolved problems. Feel free to submit computer 
related problems and use computers in your work. Programs can also be submitted as part 
of the solution. While the editor is fluent in many programming languages, be cautious in 
submitting programs as solutions. Wading through several pages of obtuse program to 
determine if the submitter has done it right is not the editors idea of a good time. Make 
sure you explain things in detail. 

If no solution is currently available, the problem will be flagged with an asterisk·. The 
deadline for submission of solutions will generally be six months after the date appearing 
on that issue. Regardless of deadline, no problem is ever officially closed in the sense that 
new insights or approaches are always welcome. If you submit a problem or solution and 
wish to guarantee a reply, please include a self-addressed envelope or postcard with 
appropriate stamps attached. Suggestions for improvement or modification are also 
welcome at any time. All proposals in this initial offering are by the editor. 

The Smarandache function Sen) is defined in the following way 

For n 2 1, Sen) = m is the smallest nonnegative integer such that n evenly divides 
m factorial. 

New Problems 

1) The Euler phi function ¢(n) is defined to the number of positive integers not exceeding 
n that are relatively prime to n. 

a) Prove that there are no solutions to the equation 
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<I>(S(n)) = n 

b) Prove that there are no solutions to the equation 

S(<I>(n)) = n 

c) Prove that there are an infinite number of solutions to the equation 

n - <I>(S(n)) = 1 

d) Prove that for every odd prime p, there is a number n such that 

n - <I>(S(n)) = p+ 1 

2) This problem was proposed in Canadian Mathematical Bulletin by P. Erdos and was 
listed as unsolved in the book Index to Mathematical Problems 1980-1984 edited by 
Stanley Rabinowitz and published by MathPro Press. 

Prove that for infinitely many n 

<I>(n) < <I>(n - <I>(n)). 

3) The following appeared as unsolved problem (21) in Unsolved Problems Related To 
Smarandache Function, edited by R. Muller and published by Number Theory 
Publishing Company. 

Are there m.,n,k non-null positive integers, m,n =1= 1 for which 

S(mn) = mk * Sen)? 

Find a solution. 

4) The following appeared as unsolved problem (22) in Unsolved Problems Related to 
Smarandache Function, edited by R. Muller and published by Number Theory 
Publishing Company. 

Is it possible to find two distinct numbers k and n such that 

is an integer? 

Find two integers n and k that satisfy these conditions. 
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5) Solve the following doubly true Russian alphametic 

lIBA 
lIBA 
TPH 

CE~b 

2 
2 
3 

7 

where 2 divides lIBA, 3 divides TPH and 7 divides CEMb. 

Can anyone come up with a similar Romanian alphametic? 

6) Prove the Smarandache Divisibility Theorem 

If a and m are integers and m > 0, then 

( am - a)(m - I)! 

is divisible by m. 

Which was problem (126) in Some Notions and Questions in Number Theory, 
published by Erhus University Press. 

7) Let D = { 0,1,2,3,4,5,6,7,8,9 }. For any number 1 ~ n ~ 10, we can take n unique 
digits from D and form a number, leading zero not allowed. Let P n be the set of all 
numbers that can be formed by choosing n unique digits from D. If 1 is not considered 
prime, which of the sets P n contains the largest percentage of primes? 

This problem is similar to unsolved problem 3 part (a) that appeared in Only Problems, 
Not Solutions, by Florentin Smarandache. 

*8) The following four problems are all motivated by unsolved problem 3 part (b) that 
appeared in Only Problems, Not Solutions, by Florentin Smarandache. 

a) Find the smallest integer n such that n! contains all 10 decimal digits. 

b) Find the smallest integer n such that the n-th prime contains all 10 decimal digits. 

c) Find the smallest integer n such that nn contains all 10 decimal digits. 

d) Find the smallest integer n such that n! contains one digit 10 times. What is that digit? 
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PROPOSED PROBLEMS 

by 

M. Bencze 

( i ) Solve the following equations: 

1) Sk(X) + Sk(y) = Sk(Z) , k E Z, X, y, Z E Z 

where S' is the Smarandache function and S(-n) = -S(n) 

2) 4 1 lIn> 4 n = S(x) + S(y) + S(z) , 

5 1 1 1 
3) n = S(x) + S(y) + S(z) , n> 5 

4) SS(Y) (x) = SS(X)(y) 

5) S(± x~) = su(± Xl:) , UEZ 
k=l k=l 

6) sy (x) - st (z) = sy-t (x-z) 

8) 2S(X4) - S2 (y) =1 

9) S(x + ~ +Z) + S(x) + S~) + S(z) = ~[ s(x ;y) + S(y ;Z) +S( z;x) ] 

10) S(x~') . S(X;2) ... S(x:") = S(x~') 
11) S(X~2) . S(X;3) ... S(x:1) = S(x~') 

12) S(x) = J.1 (y), where J.1 is the Mobius function 

13) S2(Qa) = ~ ... ~ ~ J.12(Ql) 
Q_,IQ" Q21Q3 Q,IQ2 

14) S(x) = By, where By is a Bernoulli number 

139 



15) S(x+y) ( Sex) - S(y) ) = S(x-y) ( Sex) + S(y) ) 

16) Sex) = Fy , where Fy is a Fibonacci number 

n n 

17) L S(kP) = L SP(k) 
1e=1 1e=1 

18) t S(k) = S( n(n + 1)\ 
1e=1 \. 2 ) 

19) t S(k2) = S( n(n + 1)(2n + 1)\ 
~I \. 6 ) 

20) t S(k3) = s(n2(n + 1)2) 
~I 4 

n 

21) L k(S(k)!) = (S(n + I»! -1 
~I 

22) t 1 = Sen) 
~I S(k)S(k + 1) Sen + 1) 

( ii ) Solve the system 

{ 
Sex) + S(y) = 2S(z) 
Sex) . S(y) = S2(Z) 

( iii) Find n such that n divides the sum 

15( ... 1) + 25(n-1) + ... (n-l)5( ... I) + 1 

( iv ) May be writen every positive integer n as 

n = S3(X) + 2 S3(y) 3 S3(Z) ? 

( v ) Prove that 

IS(x) + S(y) + S(z)1 + IS(x)1 + Is(y)1 + IS(z)1 ~ 

~ IS(x) + S(y) I + Is(y) + S(z) I + IS(z) + S(x) I 

for all x, y, Z E Z 

( vi ) Find all the positive integers x, y, z for which 

(x+y+z) + Sex) + S(y) + S(z) ~ S(x+y) + S(y+z) + S(z+x) 

( vii) There exists an infinity of prime numbers which may be writ en under the form 

P = S3 (x) + S3(y) + S3(Z) + S3(t) ? 

( viii) Let MI , ~, ... ,~ be finite sets and aij = card (Mi n Mj) , bij = S(aij)_ Prove that 

det( aij ) ~ 0 and det(b'J) ~ 0 . 
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( ix ) Find the sum 

L 
Q .... IIQ. 

( x ) Prove that 

f 1 is irational 
1e=1 S2(k) - S(k) + 1 

( xi) Find all the positive integers x for which 

([ x
o
+

1 
- 1 J" ([ l!.J) 

S" (n+ l)(x-l) ) ~ S X2 

where [x] is the integer part of x. 

( xii) There exists at lest a prime between S(n)!, and S(n+ I)! ? 

(xiii) If a E So is a permutation, prove that 

t a(k) >t_l 
k=1 SlIl+l(k) -le=l km 

Current address: 

RO - 2212 Sacele 
Str. Harmanului, 6 
Jud. Brasov, ROMANIA 
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PROPOSED PROBLEM* 

by 

I. M. Radu 

Show that (except for a finite set of numbers) between S( n) and S( n+ 1) there exist at 
least a prime number. (One notes by S(n) the Smarandache Function: the smallest integer such 
that S(n)! is divisible by n.) 

If Ns(n) denotes the number of primes between S(n) and S(n+l), calculate an 
asymptotic formula for Ns(n). 

Some comments: 

If n or n+ 1 is prime, then S( n) or S( n+ 1) respectively is prime. And the above 
conjuncture is solved. 

But I was not able to find a general proof It might be a useful thing to apply the 

Brensch Theorem (if n ~ 48, then there exist at least a prime between n and ~n), in stead of 

Bertrand Postulate / Tchebychev Theorem (between nand 2n there exist at least a prime) 
The last question may be writing as 

N.(n) = III(S(n + 1» - II(S(n»I , 

where II(x) is the number of primes ~ x, 
but how can we compose the function II and S ? 

References: 

[1] Dumitrescu Constantin, "The Smarandache Function", in "Mathematical Spectrum", 
Sheffield, Vol. 29, No.2, 1993, pp. 39-40. 

[2] Ibstedt Henry, "The F. Smarandache Function S(n): programs, tables, graphs, 
comments", in "Smarandache Function Journal", Vol. 2-3, No.1, 1993, pp. 38-7l. 

*Charles Ashbacher (U.S.A.), using a computer program that computes the values of S(o) cooducted a 
search up through 0<1,033,197 and found where there is 00 prime p, where S(o)SpSS(o+I). They are 
as follows: 

0= 224 
0=2057 
0=265225 
0=843637 

and S(o) = 8, 5(0+1) = 10 
and 5(0) = 22, 5(0+1) = 21 
and S(o) = 206,5(0+1) = 202 
and 5(0) = 302, 5(0+ I) = 298 
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PROPOSED PROBLEMS 

by 

M. R. Mudge 
Problem 1: 

The Smarandache no prime digits sequence is defined as follows: 
1,4,6,8,9,10,11,1,1,14,1,16,1,18,19,0,1,4,6,8,9,0,1,4,6,8,9,40,41, 
42,4,44,4,46,4,48,49,0, ... 
(Take out all prime digits of n.) 

Is it any number that occurs infinetely many times in this sequence? 
(for example 1, or 4, or 6, or 11, etc.). 

solution by Dr. Igor Shparlinski, 
School of MPCE 
Macquarie University 
NSW 2109, Australia 
Office E6A 374 
Ph. [61- (0) 2] 850 9574 
FAX [61-(0)2] 850 9551 
e-mail: igor@mpce.mq.edu.au 
http://www-comp.mpce.mq.edu.au/-igor 

It seems that: if, say n has already occured, then for example 
n3, n33, n333, etc. gives an infinitely many repetitions of this 
number. 

Problem 2: 
The Smarandache no square digits sequence is defined as follows: 

2,3,5,6,7,8,2,3,5,6,7,8,2,2,22,23,2,25,26,27,28,2,3,3,32,33,3,35, 
36,37,38,3,2,3,5,6,7,8,5,5,52,52,5,55,56,57,58,5,6,6,62, ... 
(Take out all square digits of n.) 

Is it any number that occurs infinetely many times in this sequence? 
(for example 2, or 3, or 6, or 22, etc. ?) 

Solution by Carl Pomerance (E-mail: carl@alpha.math.uga.edu): 
If any number appears in the sequence, then clearly it occurs 
infinitely often, since if the number that appears is k, and it 
comes from n by deleting square digits, then k also comes from 
10n. 

Problem 3: 
How many regions are fonned by joining, with straight chords, n point 

situated regularly on the circumference of a circle? 
The degeneracy from the maximum possible number of regions for n 

points on the circumference of a circle seems almost intractable in general. 
Perhaps the use of regularly distributed point, i.e. separated by 2: radians, 

produces the Smarandache Portions of Pi (e) !! 
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Unsolved Problems 

Edited by 

Charles Ashbacher 
Decisionmark 

200 2nd Ave. SE 
Cedar Rapids, IA 52401 
FAX (319) 365-5694 

e-maiI71603.522@compuserve.com 

Welcome to the first installment of what is to be a regular feature in Smarandache 
Notions! In this column, we will present problems where the solution is either unknown or 
incomplete. This is meant to be an interactive endeavor, so input from readers is strongly 
encouraged. Always feel free to contact the editor at any of the addresses given above. It 
is hoped that we can together advance the flow of mathematics in some small way. There 
will be no deadlines here, and even if a problem is completely solved, new insights or more 
elegant proofs are always welcome. All correspondents who are the first to resolve any 
issue appearing here will have their efforts acknowledged in a future column. 

While there will almost certainly be an emphasis on problems related to Smarandache 
notions, it will not be exclusive. Our goal here is to be interesting, challenging and maybe 
at times even profound. In modem times computers are an integral part of mathematics 
and this column is no exception. Feel free to include computer programs with your 
submissions, but please make sure that adequate documentation is included. If you are 
someone with significant computer resources and would like to be part of a collective 
effort to resolve outstanding problems, please contact the editor. If such a group can be 
formed, then sections of a problem can be parceled out and all those who participated will 
be given credit for the solution. 

And now, it is time to stop chatting and get to work! 

Definition of the Smarandache function Sen): 

Sen) = m, smallest positive integer such that m! is evenly divisible by n. 

In [1], T. Yau posed the following question: 

For what triplets n, n+1, and n+2 does the Smarandache function satisfy the Fibonacci 
relationship 

Sen) + S(n+ 1) = S(n+2)? 

And two solutions 



S(9) + S(IO) = S(II); S(l19) + S(120) = S(121) 

were gIven. 

In [2], C. Ashbacher listed the additional solutions 

S(4900) + S(4901) = S(4902); S(26243) + S(26244) = S(26245); 
S(32110) + S(32111) = S(32112) ; S(64008) + S(64009) = S(64010); 

S(368138) + S(368139) = S(368140) ; S(415662) + S(415663) = S(415664) 

discovered in a computer search up through n = 1,000,000. He then presented arguments 
to support the conjecture that the number of solutions is in fact infinite. 

Recently, Henry Ibstedt from Sweden sent a letter in response to this same problem 
appearing in the October issue of Personal Computer World. He has conducted a more 
extensive computer search, finding many other solutions. His conclusion was, "This study 
strongly indicates that the set of solutions is infinite." The complete report has been 
submitted to PCW for publication. 

Another problem dealing with the Smarandache function has been given the name Radu's 
problem, having been first proposed by I.M. Radu[3]. 

Show that, except for a finite set of numbers, there exist at least one prime number 
between S(n) and S(n+l). 

Ashbacher also dealt with this problem in [2] and conducted another computer search up 
through n = 1,000,000. Four instances where there are no primes between S(n) and 
S( n+ 1) were found. 

n = 224 = 2*2*2*2*2*7 S(n) = 8 n+l = 225 = 3*3*5*5 S(225) = 10 
n=2057= 11*11*17 S(n)=22 n+l =2058=2*3*7*7*7 S(2058)=21 
n = 265225 = 5*5*103*103 S(n) = 206 n+l = 265226 = 2*13*101 *101 

S(265226) = 202 
n = 843637 = 37*151 *151 S(n) = 302 n+l = 843638 = 2*19*149*149 

S(843638) = 298 

The fact that the last two solutions involve the pairs of twin primes (101,103) and 
(149,151) was one point used to justify the conjecture that there is an infinite set of 
numbers such that there is no prime between S(n) and S(n+l). 

Ibstedt also extended the computer search for solutions and found many other cases 
where there is no prime between S(n) and S(n+l). His conclusion is quoted below. 

"A very large set of solutions was obtained. There is no indication that the set would be 
finite. " 
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This conclusion is also due to appear in a future issue of Personal Computer World. 

The following statement appears in [4]. 

This is the smallest known solution for 6th power as the sum of 7 other 6th powers. 

Is this indeed the smallest such solution? No one seems to know. The editor would be 
interested in any information about this problem. Clearly, given enough computer time, it 
can be resolved. This simple problem is also a prime candidate for a group effort at 
resolution. 

Another related problem that would be also be a prime candidate for a group effort at 
computer resolution appeared as problem 1223 in Journal of Recreational 
Mathematics. 

Find the smallest integer that is the sum of two unequal fifth powers in two different 
ways, or prove that there is none. 

The case of third powers is well known as a result of the famous story concerning the 
number of a taxicab 

as related by Hardy[ 4]. 

It was once conjectured that there might be a solution for the fifth power case where the 
sum had about 25 decimal digits, but a computer search for a solution with 
sum < 1.02 x 1026 yielded no solutions[5]. 

Problem (24) in [6] involves the Smarandache Pierced Chain(SPC) sequence. 

{ 101, 1010101, 10101010101, 101010101010101, ... } 

or 

SPC(n) = 101 * 1 0001 0001 ... 0001 

I-I 

where the section in I - I appears n-1 times. 

And the question is, how many of the numbers 
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SPC(n) / 101 are prime? 

It is easy to verify that ifn is evenly divisible by 3, then the number of l's in SPC(n) is 
evenly divisible by 3. Therefore, so is SPC(n). And since 101 is not divisible by 3, it 
follows that 

SPC(n) / 101 

must be divisible by 3. 

A simple induction proof verifies that SPC(2k)1101 is evenly divisible by 73 for 
k = 1,2,3, ... 

Basis step: 

SPC(2)1101 = 73* 137 

Inductive step: 

Assume that SPC(2k)1101 is evenly divisible by 73. From this, it is obvious that 73 
divides SPC(2k). Following the rules of the sequence, SPC(2(k+ 1)) is formed by 
appending 01010101 to the end of SPC(2k). Since 

01010101/73 = 13837 

it follows that SPC(2(k+1)) must also be divisible by 73. 

Therefore, SPC(2k) is divisible by 73 for all k > O. Since 73 does not divide 101, it 
follows that SPC(2k) / 101 is also divisible by 73. 

Similar reasoning can be used to obtain the companion result. 

SPC(3 + 4k) is evenly divisible by 37 for all k > o. 

With these restrictions, the first element in the sequence that can possibly be prime when 
divided by 101 is 

SPC(5) = 1010101010101010101. 

However, this does not yield a prime as 

SPC(S) = 41 * 101 * 271 * 3S41 * 9091 * 27961. 

Furthermore, since the elements of the sequence SPC(Sk), k > 0 are made by appending 
the string 
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01010101010101010101 = 41 * 101 * 271 * 3541 * 9091 * 27961 

to the previous element, it is also clear that every number SPCC5k) is evenly divisible by 
271 and therefore so is SPC(5k)/1Ol. 

Using these results to reduce the field of search, the first one that can possibly be prime is 
SPC(13)1101. However, 

SPCCI3)/l01 = 53 * 79 * 521 * 859 * ..... . 

SPCC 17)11 0 1 is the next not yet been filtered out. But it is also not prime as 

SPC(17)11 0 1 = 103 * 4013 * ..... 

The next one to check is SPC(29)/1Ol, which is also not prime as 

SPC(29)1101 = 59 * 349 * 3191 * 16763 * 38861 * 43037 * 62003 * .... 

SPCC3 1 )/101 is also not prime as 

SPC(31)1101 = 2791 * .... 

At this point we can stop and argue that the numerical evidence strongly indicates that 
there are no primes in this sequence. The problem is now passed on to the readership to 
perform additional testing or perhaps come up with a proof that there are no primes in this 
sequence. 
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Review of 

Have Some Sums To Solve: The Compleat Alphametics Book, by Steven Kahan, 
Baywood Publishing Company, Amityville, NY, 1978. 114 pp.(paper), $12.45 including 
poastage, ISBN 0-89503-007-1. 

At Last!! Encoded Totals Second Addition, by Steven Kahan, Baywood Publishing 
Company, Amityville, NY, 1994. 122 pp.,(paper), $12.45 including postage, 
ISBN 0-89503-171-X. 

To many people, alphametics, problems where letters replace digits and those letters form 
the words of a message, are enjoyable to do, but clearly restricted to the area known as 
recreational mathematics. However, such an approach is simplistic. Solving a properly 
constructed alphametic is an exercise in logic and basic number theory that forces the 
solver to use many elementary rules of arithmetic and algebra if the solution is to be found 
in a reasonable length of time. 
Steven Kahan, the longtime editor of the Alphametics Column of Journal of 

Recreational Mathematics, is clearly the leading expert on this form of problem and 
these two books present many of his best efforts. The problems and messages are quite 
good and detailed solutions to all problems are included. 
For example, replace the letters of the following message with digits so that the addition 

is correct 

ROMANS 
+ ALSO 
+ MORE 
+ OR 
+ LESS 
+ ADDED 

LETTERS 

If you like logic puzzles or are a teacher looking for extra credit problems that involve 
more complex, yet elementary mathematics, either or both of these books would be an 
excellent solution to your problem. 

Reviewed by 

Charles Ashbacher 
Decisionmark 
200 2nd Ave. SE 
Cedar Rapids, IA 52401 
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Review of 

Circles: A Mathematical View, by Dan Pedoe, The Mathematical Association of 
America, Washington, D. C., 1995. 144 pp. $18.95(paper). ISBN 0-88385-518-6. 

Although it is the simplest of all nonlinear geometric forms, the circle is far from trivial. It 
is indeed a pleasure that The Mathematical Association of America chose to reprint an 
update of this classic first printed in 1957. Geometry teaching has been in retreat for many 
years in the US and that has been a sad (and very bad) thing. It is also puzzling as so 
many people say that the reason why they cannot do mathematics (i.e. algebra) is that they 
need to see something in order to understand it. Furthermore, the first mathematical 
education most children receive contains the differentiation of shapes and their different 
properties. 
Circles and lines as used in geometry are abstractions that are easily grasped, much 
simpler to many than the abstract generalizations of algebra. One can only hope that this 
book signals a rebirth in interest in geometry education. Without question, it can be used 
as a text for that education and would help parent a rebirth. To remedy this modem 
affliction and make the material available to the current readership, a chapter zero was 
included. This new chapter is used to introduce the background concepts and terminology 
that could be assumed when it was first published. 
No one can truly appreciate the intellectual achievements of the ancients as summarized 

by Euclid without doing some of the problems. There is also a stark beauty to a form of 
mathematics where the tools are a compass, straightedge and a mind. Particularly in the 
age of calculators and computers. All of the basic, ancient, results concerning circles are 
covered as well as some very recent ones. The theorems are well presented and complete 
without being overdone. In keeping with the ancient traditions, pencil, paper, compass and 
straightedge are the only tools used. A short collection of solved exercises is also 
included. 
Like the books of Euclid, this work will grow old but never dated. It was destined to be a 
classic when it was first printed and remains so today. 

From Erdos to Kiev: Problems of Olympiad Caliber, edited by Ross Honsberger, The 
Mathematical Association of America, 1995.250 pp., $31.00(paper). ISBN 0-88385-324-
8. 

Mathematicians by definition have a love affair with good problems, and this is a 
collection of the best. While designed to be at a level for mathematical olympiad use, all 
mathematicians will find something in here that will stretch them. Some are at the level 
where the solution requires a simple insight, but others may require reaching for your 
thinking cap. However, all can be solved using arguments considered within the reach of 
an olympic mathlete. Which is encouraging. It is nice to know that there are young people 
who can do problems that force me to strain a few neurons. Solutions are included, most 
of which were created by the editor. The problems are taken from geometry, number 
theory, probability and combinatorics. 
Another high quality entry in the series of problem books by Ross Honsberger, this is a 

book for all mathematicians, potential olympiads to professionals. 

Reviewed by 
Charles Ashbacher 
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Review of 

h Funct ;on, by Charles Ashbacher, An Introduction to the Smarandac e • Erhus University Press, 1995, 60 pp. (paper), $7.95. 
ISBN 1-879585-49-9 

This slim volume patently lives up to it~ title .. It does . give an introduction to the Smarandache funct~o~ rea~h~ng ~rom ~ts definition all the way to an enumeration and br~ef d~scuss~on of several unsolved problems. Theorems are.c~ear~y state~ and p~oofs are always supplied. However, the expos~t~~n.~s relat~ve~y l~vely and informal, lending to this book's readab~l~ty and brev~ty. One could get an overview of the topic by ski~ing this book ~n an hour or two, skipping the proofs and algor~thm~. The more . diligent reader will spend considerably more t~me const~ct~ng his own examples to illustrate the proofs and test the a~gor~thms. Chapter one covers basics of the number theoret~c Smaran~ache function, Sen), where n is a positive integer. Included are ~ts definition, 16 theorems and a ready-to-use C++ program for computing values of this function. A background in Number Theory is certainly helpful for approaching this topic, bu~ not absolutely necessary. Just in case, the chapter begins with a one page summary of the idea of divisibility and definitions of the standard arithmetic functions f, s and t. It culminates with a theorem characterizing the range of Sen). The author has considerable experience in computer investigations of this and other topics in number theory and recreational mathematics. In addition to the C++ implementation, he has supplied a UBASIC program, useful for handling extremely large numbers which surpass the maximum allowable integer size of C++. 
Chapter two takes up some deeper questions. Topics include iteration and fixed points of the Smarandache function as well as solutions of numerous equations such as the Fibonacci-like relation S(n+2) = S(n+1) + Sen) Various problems are presented and solved. Many other, as yet unsolved, problems are presented. In the latter case the author often furnishes a conjecture along with helpful rationale. The reader is led to the jumping off place, ready for his own foray into unresolved areas of investigation. These conjectures and plausibility arguments are clearly labelled as such and hence distinguishable from the theorems and proofs with which they are interspersed. This book is not without its niggling errors, mostly typographical and obvious enough as to cause no serious confusion. A few discrepancies in terminology and notation were also noted, probably not uncommon in the literature pertaining to a mathematical topic which is less than 20 years old. As Ashbacher notes in his introductory material, the Smarandache function was created in the 1970' s and first published in 1980. In this work, he has given us a bibliography guiding us to works published in the intervening years and provided a good roadmap taking us from the beginnings to the current state of knowledge of his topic. 

Reviewed by 

Lamarr Widmer 
Associate Professor of Mathematics 
Messiah College, Grantham, PA 17027 
E-mail: widrner@mcis.messiah.edu . 
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