# SMARANDACHE CONCATENATE TYPE SEQUENCES* 

Helen Marimutha
Northland Pioneer College (USA)


#### Abstract

Professor Anthony Begay of Navajo Community College influenced me in writing this paper. I enjoyed the Smarandache concatenation. The sequences shown here have been extracted from the Arizona State University(Tempe) Archives. They are defined as follows:


(1) Smarandache Concatenated natural sequence:

$$
\begin{aligned}
& 1,22,333,4444,55555,666666,7777777,88888888,999999999,10101010101010101010, \\
& 111111111111111111111,121212121212121212121212,13131313131313131313131313, \\
& 1414141414141414141414141414,151515151515151515151515151515, \ldots
\end{aligned}
$$

(2) Smarandache Concatenated prime sequence:
$2,23,235,2357,235711,23571113,2357111317,235711131719,23571113171923, \ldots$
Conjecture: there are infinitely many primes among these numbers!
(3) Smarandache Concatenated odd sequence:
$1,13,135,1357,13579,1357911,135791113,13579111315,1357911131517, \ldots$
Conjecture: there are infinitely many primes among these numbers!
(4) Smarandache Concatenated even sequence:
$2,24,246,2468,246810,24681012,2468101214,246810121416, \ldots$
Conjecture: none of them is a perfect power!
(5) Smarandache Concatenated S-sequence $\{$ generalization $\}$ :

Let $s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{n}, \ldots$ be an infinite integer sequence (noted by $S$ ). Then:
$s_{1}, \overline{s_{1} s_{2}}, \overline{s_{1} s_{2} s_{3}}, \overline{s_{1} s_{2} s_{3} s_{4}}, \ldots, \overline{s_{1} s_{2} s_{3} \ldots s_{n}}, \ldots$
is called the Concatenated S -sequence.
Questions: (a) How many terms of the Concatenated S -sequence belong to the initial S -sequence?
(b) Or, how many terms of the Concatenated S-sequence verify the relation of other given sequences?

The first three cases are particular.

Look now at some other examples, when S is a sequence of squares, cubes, Fibonacci respectively (and one can go so on).
(6) Smarandache Concatenated Square sequence:
$1,14,149,14916,1491625,149162536,14916253649,1491625364964, \ldots$

How many of them are perfect squares?
(7) Smarandache Concatenated Cubic sequence:
$1,18,1827,182764,182764125,182764125216,182764125216343, \ldots$

How many of them are perfect cubes?
(8) Smarandache Concatenated Fibonacci sequence:
$1,11,112,1123,11235,112358,11235813,1123581321,112358132134, \ldots$
Does any of these numbers is a Fibonacci number?

## REFERENCES

1. Smarandache, F. (1997). Collected Papers Vol. II, University of Kishinev.
2. Smarandache, F. (1975). "Properties of the Numbers", University of Craiova Archives.
[See also Arizona State University Special Collections, Tempe, Arizona, USA].

* This paper originally appeared in Bulletin of Pure and Applied Sciences, Vol. 16 E(No. 2) 1997; p. 225-226

