SMARANDACHE CONCATENATED POWER DECDMALS
 AND
 THEIR IRRATIONALITY

Yongdong Guo and Maohua Le
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China

Abstract

In this paper we prove that all Smarandache concatenated k -power decimals are irrational numbers.

For any positive integer k, we define the Smarandache concatenated k-power decimal α_{k} as follows:

$$
\alpha_{1}=0.1234567891011 \ldots, \alpha_{2}=0.149162536496481100121 \ldots
$$

$$
\begin{equation*}
\alpha_{3}=0.18276412521634351272910001331 \ldots, \ldots, \text { etc. } \tag{1}
\end{equation*}
$$

In this peper we discuss the imationally of α_{5}. We prove the following result:
Theorem. For any positive integer $\mathrm{k}, \alpha_{\mathrm{k}}$ is an irrational number.
Proof. We nou suppose that α_{k} is a rational number.
Then, by [l, Theorem 135], α_{k} is an infinite periodical decimal such that

$$
\begin{equation*}
\alpha_{k}=0 . a_{1} \ldots a_{\mathrm{t}} \overline{a_{\mathrm{r}-1} \ldots a_{\mathrm{r}-\mathrm{t}}} \tag{2}
\end{equation*}
$$

were r, t are fixed integers, with $r \geq 0$ and $t>0, a_{t}, \ldots, a_{r}, a_{r+1}, \ldots, a_{r-t}$ are integers satisfying $0 \leq \mathrm{a}_{\mathrm{i}} \leq 9(\mathrm{i}=1,2, \ldots, \mathrm{r}+\mathrm{t})$.
However, we see from (1) that there exist arbitrary many
continuous zeros in the expansion of α_{k}. Therefore, we find from (2) that $a_{r-1}=\ldots=a_{r-t}=0$. It implies that α_{k} is a finite decimal; a contradiction.
Thus, α_{k} must be an irrational number. The theorem is proved.
Finally, we pose a further question as follows:
Question. Is α_{k} a transcedental number for any positive integer k ?
By an old result of Mahler [2], the answer of our question is positive for $k=1$.
References:

1. G.H.Hardy and E.M.Wright, "An Introduction to the Theory of Numbers", Oxford University Press, Oxford, 1938.
2. K.Mahler, "Aritmetische Eigenschaften einer Klasse von Dezimalbruchen", Nederl. Akad. Wetesch. Proc., Ser.A, 40 (1937), 421-428.
