SMARANDACHE COUNTER-PROJECTIVE GEOMETRY

by

Sandy P. Chimienti	Mihaly Bencze
Mathematics and Science Department	6, Hatmanului Street
University of New Mexico	2212 Sacele 3
Gallup, NM 87301, USA	Jud. Brasov, Romania

Abstract

: All three axioms of the projective geometry are denied in this new geometry.

Key Words: Projective Geometry, Smarandache Geometries, Geometrical Model

Introduction:

This type of geometry has been constructed by F.Smarandache[4] in 1969.
Let P, L be two sets, and r a relation included in PxL. The elements of P are called points, and those of L lines. When ($p, 1$) belongs to r, we say that the line I contains the point p . For these, one imposes the following COUNTER-AXIOMS:
(I) There exist: either at least two lines, or no line, that contains two given distinct points.
(II) Let $\mathrm{pl}, \mathrm{p} 2, \mathrm{p} 3$ be three non-collinear points, and $\mathrm{q} 1, \mathrm{q} 2$ two distinct points. Suppose that $\{\mathrm{pl}, \mathrm{q} 1, \mathrm{p} 3\}$ and $\{\mathrm{p} 2, \mathrm{q} 2, \mathrm{p} 3\}$ are collinear triples. Then the line containing $\mathrm{p} 1, \mathrm{p} 2$, and the line containing q1, q2 do not intersect.
(III) Every line contains at most two distinct points.

We consider that in a discontinuous space one can construct a model to this geometry.

References:

[1] Charles Ashbacher, "Smarandache Geometries", <Smarandache Notions Journal>, Vol. 8, No. 1-2-3, Fall 1997, pp. 212-215.
[2] Jerry L. Brown, "The Smarandache Counter-Projective Geometry", <Abstracts of Papers Presented to the American Mathematical Society

Meetings>, Vol. 17, No. 3, Issue 105, 1996, p. 595.
[3] Florentin Smarandache, "Collected Papers" (Vol. II), University of Kishinev Press, Kishinev, pp. 5-28, 1997.
[4] Florentin Smarandache, "Paradoxist Mathematics" (lecture), Bloomsburg University, Mathematics Department, PA, USA, November 1985.

