SMARANDACHE DETERMINANT SEQUENCES Amarnath Murthy, S.E.(E&T), WLS, Oil and Natural Gas Corporation Ltd., Sabarmati, Ahmedabad,- 380005 INDIA.

In this note two types of Smarandache type determinant sequences are defined and studied.

(1) Smarandache Cyclic Determinant Sequences:

(a) Smarandache Cyclic Determinant Natural Sequence:

1	1	2		1	2	3		1	2	3	4	
,	2	1	,	2	3	1		2	3	4	1	
				3	1	2	,	3	4	1	2	
							-	4	1	2	3	,

This suggests the possibility of the nth term as

 $T_n = (-1)^{[n/2]} \{(n+1)/2\} \cdot n^{n-1}$ (A)

Where [] stands for integer part

We verify this for n = 5, and the general case can be dealt with on similar lines.

$T_5 = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \\ 3 & 4 & 5 & 1 & 2 \\ 4 & 5 & 1 & 2 & 3 \\ 5 & 1 & 2 & 3 & 4 \end{vmatrix}$

on carrying out following elementary operations

(a) $R_1 = \text{sum of all the rows, (b) taking 15 common from the first row (c) Replacing <math>C_k$ the kth column by $C_k - C_1$, we get

$$T_{5} = 15 \begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 2 & 3 & -1 \\ 3 & 1 & 2 & -2 & -1 \\ 4 & 1 & -3 & -2 & -1 \\ 5 & -4 & -3 & -2 & -1 \end{vmatrix} = 15 \begin{vmatrix} 1 & 2 & 3 & -1 \\ 1 & 2 & -2 & -1 \\ 1 & -3 & -2 & -1 \\ -4 & -3 & -2 & -1 \end{vmatrix}$$

 R_1-R_2 , R_3-R_2 , R_4-R_2 , gives

$$15 \begin{vmatrix} 0 & 0 & 5 & 0 \\ 1 & 2 & -2 & -1 \\ 0 & -5 & 0 & 0 \\ -5 & -5 & 0 & 0 \end{vmatrix} = 1875, \{\text{the proposition (A) is verified to be true}\}$$

The proof for the general case though clumsy is based on similar lines. Generalization:

This can be further generalized by considering an arithmetic progression with the first term as **a** and the common difference as **d** and we can define **Smarandache Cyclic Arithmetic determinant sequence** as

Conjecture-1:

$$T_n = (-1)^{[n/2]} S_n .d^{n-1} .n^{n-2} = (-1)^{[n/2]} .\{a + (n-1)d\}.\{1/2\} .\{nd\}^{n-1}$$

Where S_n is the sum of the first n terms of the AP

Open Problem: To develop a formula for the sum of n terms of the sequence.

(2) Smarandache Bisymmetric Determinant Sequences:

(a) Smarandache Bisymmetric Determinant Natural Sequence:

The determinants are symmetric along both the leading diagonals hence the name.

. .

$$1, -3, -12, 40, \ldots$$

This suggests the possibility of the nth term as

 $T_{n} = (-1)^{[n/2]} \{n(n+1)\} \cdot 2^{n-3}$ (B)

We verify this for n = 5, and the general case can be dealt with on similar lines.

:	1				1	1
	1	2	3	4	5	
	2	3	4	5	4	
$T_5 =$	3	4	5	4	3	
	4	5	4	3	2	
T5 =	5	4	3	2	1	

on carrying out following elementary operations (b) $R_1 = sum of all the rows$, (b) taking 15 common from the first row, we get

 $R_1 = R_1 + R_4$ gives

$$15 \begin{vmatrix} 0 & 0 & 0 & -2 \\ 1 & 2 & 1 & 0 \\ 1 & 0 & -1 & -2 \\ -1 & -2 & -3 & -4 \end{vmatrix} = 120$$
, which confirms with (B)

The proof of the general case can be based on similar lines.

Generalization: We can generalize this also in the same fashion by considering an arithmetic progression as follows:

$$\begin{vmatrix} a & a+d \\ a & a+d \\ a+d & a \end{vmatrix}, \begin{vmatrix} a & a+d & a+2d \\ a+d & a+2d & a+d \\ a+2d & a+d & a \\$$

Conjecture-2: The general term of the above sequence is given by

$$T_n = (-1)^{[n/2]} . \{ a + (n-1)d \} . 2^{n-3} . d^{n-1}$$