SMARANDACHE DETERMINANT SEQUENCES

Amarnath Murthy, S.E.(E\&T), WLS, Oil and Natural Gas Corporation Ltd., Sabarmati, Ahmedabad,- 380005 INDIA.

In this note two types of Smarandache type determinant sequences are defined and studied.
(1) Smarandache Cyclic Determinant Sequences:
(a)Smarandache Cyclic Determinant Natural Sequence:

$1,-3,-18$, 160 , . . .

This suggests the possibility of the $\mathrm{n}^{\text {th }}$ term as
$\mathrm{T}_{\mathrm{n}}=(-1)^{[\mathrm{m} / \mathrm{L}]}\{(\mathrm{n}+1) / 2\} \cdot \mathrm{n}^{\mathrm{n}-1}$
Where [] stands for integer part
We verify this for $\mathrm{n}=5$, and the general case can be dealt with on similar lines.
$\mathrm{T}_{5}=\left|\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \\ 3 & 4 & 5 & 1 & 2 \\ 4 & 5 & 1 & 2 & 3 \\ 5 & 1 & 2 & 3 & 4\end{array}\right|$
on carrying out following elementary operations
(a) $\mathrm{R}_{1}=$ sum of all the rows, (b) taking 15 common from the first row
(c) Replacing C_{k} the $\mathrm{k}^{\text {th }}$ column by $\mathrm{C}_{\mathrm{k}}-\mathrm{C}_{1}$, we get
$\mathrm{T}_{5}=15\left|\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 2 & 3 & -1 \\ 3 & 1 & 2 & -2 & -1 \\ 4 & 1 & -3 & -2 & -1 \\ 5 & -4 & -3 & -2 & -1\end{array}\right|=15\left|\begin{array}{cccc}1 & 2 & 3 & -1 \\ 1 & 2 & -2 & -1 \\ 1 & -3 & -2 & -1 \\ -4 & -3 & -2 & -1\end{array}\right|$
$R_{1}-R_{2}, R_{3}-R_{2}, R_{4}-R_{2}$, gives

$$
15\left|\begin{array}{rrrr}
0 & 0 & 5 & 0 \\
1 & 2 & -2 & -1 \\
0 & -5 & 0 & 0 \\
-5 & -5 & 0 & 0
\end{array}\right|=1875 \text {, }\{\text { the proposition (A) is verified to be true }\}
$$

The proof for the general case though clumsy is based on similar lines.
Generalization:
This can be further generalized by considering an arithmetic progression with the first term as a and the common difference as \mathbf{d} and we can define Smarandache Cyclic Arithmetic determinant sequence as
$|a|,\left|\begin{array}{cc}a & a+d \\ a+d & a\end{array}\right|,\left|\begin{array}{ccc}a & a+d & a+2 d \\ a+d & a+2 d & a \\ a+2 d & a & a+d\end{array}\right|, \quad . \quad$.

Conjecture-1:

$T_{n}=(-1)^{[n / 2]} S_{n} \cdot d^{n-1} \cdot n^{n-2}=(-1)^{[n / 2]} \cdot\{a+(n-1) d\} \cdot\{1 / 2\} \cdot\{n d\}^{n-1}$
Where S_{n} is the sum of the first n terms of the AP
Open Problem: To develop a formula for the sum of n terms of the sequence.

(2) Smarandache Bisymmetric Determinant Sequences:

(a)Smarandache Bisymmetric Determinant Natural Sequence:

The determinants are symmetric along both the leading diagonals hence the name.

$$
|1|,\left|\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right|,\left|\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 2 \\
3 & 2 & 1
\end{array}\right|,\left|\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 3 \\
3 & 4 & 3 & 2 \\
4 & 3 & 2 & 1
\end{array}\right| \ldots, \ldots
$$

$$
1,-3,-12
$$

$$
40 \text {, . . . }
$$

This suggests the possibility of the $\mathrm{n}^{\text {th }}$ term as
$T_{n}=(-1)^{[n / 2]}\{n(n+1)\} \cdot 2^{1-3}$
We verify this for $\mathrm{n}=5$, and the general case can be dealt with on similar lines.
$\mathrm{T}_{5}=\left|\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 4 \\ 3 & 4 & 5 & 4 & 3 \\ 4 & 5 & 4 & 3 & 2 \\ 5 & 4 & 3 & 2 & 1\end{array}\right|$
on carrying out following elementary operations
(b) $\mathrm{R}_{1}=$ sum of all the rows, (b) taking 15 common from the first row, we get

$$
15\left|\begin{array}{cccc}
1 & 2 & 3 & 2 \\
1 & 2 & 1 & 0 \\
1 & 0 & -1 & -2 \\
-1 & -2 & -3 & -4
\end{array}\right|
$$

$R_{1}=R_{1}+R_{4}$ gives

$$
15\left|\begin{array}{cccc}
0 & 0 & 0 & -2 \\
1 & 2 & 1 & 0 \\
1 & 0 & -1 & -2 \\
-1 & -2 & -3 & -4
\end{array}\right|=120, \text { which confirms with (B) }
$$

The proof of the general case can be based on similar lines.
Generalization: We can generalize this also in the same fashion by considering an arithmetic progression as follows:
$a\left|,\left|\begin{array}{cc}a & a+d \\ a+d & a\end{array}\right|,\left|\begin{array}{ccc}a & a+d & a+2 d \\ a+d & a+2 d & a+d \\ a+2 d & a+d & a\end{array}\right|, \quad . \quad\right.$.

Conjecture-2: The general term of the above sequence is given by
$T_{\mathrm{n}}=(\mathbf{- 1})^{[\mathrm{n} / 2]} \cdot\{\mathrm{a}+(\mathrm{n}-1) \mathrm{d}\} \cdot 2^{\mathrm{n}-3} \cdot \mathrm{~d}^{\mathrm{n}-1}$

