SMARANDACHE-GALOIS FIELDS

W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai - 600 036, India. E-mail: <u>vasantak@md3.vsnl.net.in</u>

Abstract: In this paper we study the notion of Smarandache-Galois fields and homomorphism and the Smarandache quotient ring. Galois fields are nothing but fields having only a finite number of elements. We also propose some interesting problems.

Keywords: Smarandache ring, Smarandache-Galois field, Smarandache field homomorphism, Smarandache quotient ring

Definition [2]: The Smarandache ring is defined to be a ring A such that a proper subset of A is a field (with respect with the same induced operations). By proper set we understand a set included in A, different from the empty set, from the unit element if any, and from A.

Definition 1: A finite ring S (i.e. a ring having finite number of elements) is said to be a *Smarandache-Galois field* if S contains a proper subset A, $A \subset S$ such that A is a field under the operations of S.

Clearly we know every finite field is of characteristic p and has p^n elements, $0 < n < \infty$.

Example 1: Let $Z_{10} = \{0, 1, 2, 3, 4, 5, ..., 9\}$ be the ring of integers modulo 10. Z_{10} is a Smarandache-Galois field. For the set $A = \{0, 5\}$ is a field for $5^2 = 5$ acts as a unit and is isomorphic with Z_2 .

Example 2: Let $Z_8 = \{0, 1, 2, ..., 7\}$ be the ring of integers modulo 8. Z_8 is not a Smarandache-Galois field, for Z_8 has no proper subset A which is a field.

Thus we have the following interesting theorem.

Theorem 2: Z_{p^n} is not a Smarandache field for any prime p and for any n.

Proof: Z_{p^n} is the ring of integers modulo p^n . Clearly Z_{p^n} is not a field for $p^r p^s = 0 \pmod{p^n}$ when r + s = n. Now any $q \in Z_{p^n}$ if not a multiple of p will

generate Z_{p^n} under the operations addition and multiplication. If q is a multiple of p (even a power of p) then it will create zero divisors. So Z_{p^n} cannot have a proper subset that is a field.

Theorem 3: Let Z_m be the ring of integers modulo m. $m = p_1...p_t$, t > 1, where all p_i are distinct primes. Then Z_m is a Smarandache-Galois field.

Proof: Let Z_m be the ring of integers modulo m. Let $m = p_1...p_t$, for every prime p_i under addition and multiplication will generate a finite field. So Z_m is a Smarandache-Galois field.

Example 3: Let $Z_6 = \{0, 1, 2, ..., 5\}$. Clearly $\{0, 2, 4\}$ is a field with $4^2 = 4 \pmod{6}$ acting as the multiplicative identity. So $\{0, 2, 4\}$ is a field. Similarly $\{0, 3\}$ is a field. Hence Z_6 is a Smarandache-Galois field.

Example 4: Let $Z_{105} = \{0, 1, 2, ..., 104\}$ be the ring of integers modulo 105. Clearly A = $\{0, 7, 14, 21, 28, ..., 98\}$ is a field with 15 elements. So Z_{105} is a Smarandache-Galois field.

Example 5: Let $Z_{24} = \{0, 1, 2, ..., 23\}$ be the ring of integers modulo 24. $\{0, 8, 16\}$ is a field with 16 as unit since $16^2 = 16$ and $\{0, 8, 16\}$ isomorphic with Z_3 . So Z_{24} is a Smarandache-Galois field.

Note that $24 = 2^3 \cdot 3$ and not of the form described in Theorem 3.

Example 6: $Z_{12} = \{0, 1, 2, ..., 11\}$. A = $\{0, 4, 8\}$ is a field with $4^2 = 4 \pmod{12}$ as unit. So Z_{12} is a Smarandache-Galois field.

Theorem 4: Let Z_m be the ring of integers with $m = p_1^{\alpha_1} p_2$. Let $A = \{ p_1^{\alpha_1}, 2p_1^{\alpha_2}, \dots, (p_2 - 1)p_1^{\alpha_1}, 0 \}$. Then A is a field of order p_2 with $p_1^{\alpha_1}$. $p_1^{\alpha_i} = p_1^{\alpha_i}$ for some α_i and $p_1^{\alpha_i}$ acts as a multiplicative unit of A.

Proof: Let Z_m and A be as given in the theorem. Clearly A is additively and multiplicatively closed with 0 as additive identity and $p_1^{\alpha_i}$ as multiplicative identity.

We now pose the following problems:

Problem 1: Z_m is the ring of integers modulo m. If $m = p_1^{\alpha_t}, ..., p_t^{\alpha_t}$ with one of $\alpha_i = 1, 1 \le i \le t$. Does it imply Z_m has a subset having p_i elements which forms a field?

Problem 2: If Z_m is as in Problem 1, can Z_m contain any other subset other than the one mentioned in there to be a field? Further we propose the following problem.

Problem 3: Let Z_m be the ring of integers modulo m that is a Smarandache-Galois field. Let $A \subset Z_m$ be a subfield of Z_m . Then prove |A|/m and |A| is a prime and not a power of prime.

A natural question now would be: Can we have Smarandache-Galois fields of order p^n where p is a prime? When we say order of the Smarandache-Galois field we mean only the number of elements in the Smarandache Galois field. That is like in Example 3 the order of the Smarandache-Galois field is 6. The answer to this question is yes.

Example 7: Let $Z_p[x]$ be the polynomial ring in the variable x over the field Z_p (p a prime). Let $p(x) = p_0 + p_1 x + ... + p_n x^n$ be a reducible polynomial of degree n over Z_p . Let I be the ideal generated by p(x) that is $I = \langle p(x) \rangle$.

Now
$$\frac{Z_p[x]}{I = \langle p(x) \rangle} = R$$
 is a ring.

Clearly R has a proper subset A of order p which is a field. So their exists Smarandache-Galois field of order p^n for any prime p and any positive integer n.

Example 8: Let $Z_3[x]$ be the polynomial ring with coefficients from the field Z_3 . Consider $x^4 + x^2 + 1 \in Z_3[x]$ is reducible. Let I be the ideal generated by $x^4 + x^2 + 1$. Clearly $R = \frac{Z_3[x]}{I} = \{I, I+1, I+2, I+x, I+2x, I+x+1, I+x+2, I+2x+1, I+2x+2, I+2x+2, I+2x+2, I+x^2, I+x^3, ..., I+2x+2+2x^2+2x^3\}$ having 81 elements. Now

 $\{ I, I+1, I+2 \} \subseteq R$ is a field. So R is a Smarandache-Galois field of order 3^4 .

Theorem 5: A finite ring is a Smarandache ring if and only if it is a Smarandache-Galois field.

Proof: Let R be a finite ring that is a Smarandache ring then, by the very definition, R has a proper subset which is a field. Thus R is a Smarandache-Galois field.

Conversely, if R is a Smarandache-Galois field then R has a proper subset which is a field. Hence R is a Smarandache ring.

This theorem is somewhat analogous to the classical theorem "Every finite integral domain is a field" for "Every finite Smarandache ring is a Smarandache-Galois field".

Definition 6: Let R and S be two Smarandache-Galois fields. ϕ , a map from R to S, is a *Smarandache-Galois field homomorphism* if ϕ is a ring homomorphism from R to S.

Definition 7: Let R and S be Smarandache Galois fields. We say ϕ from R to S is a *Smarandache-Galois field isomorphism* if ϕ is a ring isomorphism from R to S.

Definition 9: Let Z_m be a Smarandache field. $A \subset Z_m$ be a subfield of Z_m . Let $r \in A$ such that $r \neq 0$, $r^2 = r \pmod{m}$ acts as the multiplicative identity of A. Define $\frac{Z_m}{\{A\}} = \{0,1,2,..., r-1\}$. We call $\frac{Z_m}{\{A\}}$ the Smarandache quotient ring and the operation on $\frac{Z_m}{\{A\}} = \{0,1,..., r-1\}$ is usual addition and multiplication modulo r.

Theorem 9: Let Z_m be a Smarandache-Galois field. $A \subset Z_m$ be a subfield of Z_m . $\frac{Z_m}{\{A\}}$ the Smarandache quotient ring need not in general be a Smarandache ring or equivalently a Smarandache-Galois field.

Proof: By an example. Take $Z_{24} = \{0, 1, 2, ..., 23\}$ be the ring of integers modulo 24. Let A = $\{0, 8, 16\}$; $16^2 = 16 \pmod{24}$ acts as multiplicative identity for A. $\frac{Z_{24}}{\{A\}} = \{0, 1, 2, ..., 15\}$. Clearly $\frac{Z_{24}}{\{A\}}$ is not a Smarandache ring or a Smarandache-Galois field.

Thus, motivated by this we propose the following:

Problem 4: Find conditions on m for Z_m to have its Smarandache quotient ring to be a Smarandache ring or Smarandache-Galois field.

Example 10: $Z_{12} = \{0, 1, ..., 11\}$ is the ring of integers modulo 12. A = $\{0, 4, 8\}$ is a field with $4^2 = 4 \pmod{12}$ as multiplicative identity. $\frac{Z_{12}}{\{0,4,8\}} = \{0, 1, 2, 3\} \pmod{4}$ is not a Smarandache-Galois field or a Smarandache ring.

Example 11: $Z_{21} = \{0, 1, 2, ..., 20\}$ is the ring of integers modulo 21. $A = \{0, 7, 14\}$ is a subfield. $\frac{Z_{21}}{\{A\}} = \{0, 12, ..., 6\} \mod 7$ is not a Smarandache-Galois field. Let $B = \{0, 3, 6, 9, 12, 15, 18\} \subseteq Z_{21}$. Clearly B is a field with $15^2 = 15 \pmod{21}$ as a multiplicative unit. Now

w,
$$\frac{Z_{21}}{\{0,3,6,9,12,15,18\}} = \{0,1,2,\dots,14\}$$
 is a Smarandache-

Galois field.

Thus we have the following interesting:

Problem 5: Let Z_m be the Smarandache ring. Let A be a subset which is a field. When does an A exist such that $\frac{Z_m}{A}$ is a Smarandache-Galois field?

References:

- [1] I. N. Herstein, Topics in Algebra, New York, Blaisdell, 1964.
- [2] Padilla, Raul. Smarandache Algebraic Structures, Bulletin of Pure and Applied Sciences, Delhi, Vol. 17 E., No. 1, 119-121, 1998; http://www.gallup.unm.edu/~smarandache/ALG-S-TXT.TXT.