SMARANDACHE-GALOIS FIELDS

W. B. Vasantha Kandasamy
Department of Mathematics
Indian Institute of Technology, Madras
Chennai - 600 036, India.
E-mail: vasantak@md3.vsnl.net.in

Abstract

In this paper we study the notion of Smarandache-Galois fields and homomorphism and the Smarandache quotient ring. Galois fields are nothing but fields having only a finite number of elements. We also propose some interesting problems.

Keywords: Smarandache ring, Smarandache-Galois field, Smarandache field homomorphism, Smarandache quotient ring

Definition [2]: The Smarandache ring is defined to be a ring A such that a proper subset of A is a field (with respect with the same induced operations). By proper set we understand a set included in A, different from the empty set, from the unit element if any, and from A.

Definition 1: A finite ring S (i.e. a ring having finite number of elements) is said to be a Smarandache-Galois field if S contains a proper subset $A, A \subset S$ such that A is a field under the operations of S.

Clearly we know every finite field is of characteristic p and has p^{n} elements, $0<\mathrm{n}<\infty$.

Example 1: Let $Z_{10}=\{0,1,2,3,4,5, \ldots, 9\}$ be the ring of integers modulo 10 . Z_{10} is a Smarandache-Galois field. For the set $A=\{0,5\}$ is a field for $5^{2}=5$ acts as a unit and is isomorphic with Z_{2}.

Example 2: Let $\mathrm{Z}_{8}=\{0,1,2, \ldots, 7\}$ be the ring of integers modulo 8. Z_{8} is not a Smarandache-Galois field, for Z_{8} has no proper subset A which is a field.

Thus we have the following interesting theorem.
Theorem 2: $Z_{p^{n}}$ is not a Smarandache field for any prime p and for any n.
Proof: Z_{p} is the ring of integers modulo p^{n}. Clearly $Z_{p^{n}}$ is not a field for $p^{r} \cdot p^{s}$ $=0\left(\bmod p^{n}\right)$ when $r+s=n$. Now any $q \in Z_{p}$ if not a multiple of p will
generate Z_{p}, under the operations addition and multiplication. If q is a multiple of p (even a power of p) then it will create zero divisors. So $Z_{p^{\prime}}$ cannot have a proper subset that is a field.

Theorem 3: Let Z_{m} be the ring of integers modulo $m . m=p_{1} \ldots p_{t}, t>1$, where all p_{i} are distinct primes. Then Z_{m} is a Smarandache-Galois field.

Proof: Let Z_{m} be the ring of integers modulo m. Let $m=p_{1} \ldots \mathrm{p}_{\mathrm{t}}$, for every prime p_{i} under addition and multiplication will generate a finite field. So Z_{m} is a Smarandache-Galois field.

Example 3: Let $Z_{6}=\{0,1,2, \ldots, 5\}$. Clearly $\{0,2,4\}$ is a field with $4^{2}=4$ (mod 6) acting as the multiplicative identity. So $\{0,2,4\}$ is a field. Similarly $\{0,3\}$ is a field. Hence Z_{6} is a Smarandache-Galois field.

Example 4: Let $Z_{105}=\{0,1,2, \ldots, 104\}$ be the ring of integers modulo 105. Clearly $A=\{0,7,14,21,28, \ldots, 98\}$ is a field with 15 elements. So Z_{105} is a Smarandache-Galois field.

Example 5: Let $Z_{24}=\{0,1,2, \ldots, 23\}$ be the ring of integers modulo 24 . $\{0,8$, $16\}$ is a field with 16 as unit since $16^{2}=16$ and $\{0,8,16\}$ isomorphic with Z_{3}. So Z_{24} is a Smarandache-Galois field.

Note that $24=2^{3} .3$ and not of the form described in Theorem 3.
Example 6: $\mathrm{Z}_{12}=\{0,1,2, \ldots, 11\} . \mathrm{A}=\{0,4,8\}$ is a field with $4^{2}=4(\bmod$ 12) as unit. So Z_{12} is a Smarandache-Galois field.

Theorem 4: Let Z_{m} be the ring of integers with $m=p_{1}^{\alpha_{1}} p_{2}$. Let $A=$ $\left\{p_{1}^{\alpha_{1}}, 2 p_{1}^{\alpha_{1}}, \cdots,\left(p_{2}-1\right) p_{1}^{\alpha_{1}}, 0\right\}$. Then A is a field of order p_{2} with $p_{1}^{\alpha_{i}} \cdot p_{1}^{\alpha_{i}}=$ $\mathrm{p}_{1}^{\alpha_{i}}$ for some α_{i} and $\mathrm{p}_{1}^{\alpha_{i}}$ acts as a multiplicative unit of A .

Proof: Let Z_{m} and A be as given in the theorem. Clearly A is additively and multiplicatively closed with 0 as additive identity and $p_{1}^{\alpha_{i}}$ as multiplicative identity.

We now pose the following problems:
Problem 1: Z_{m} is the ring of integers modulo m. If $m=p_{1}^{\alpha_{1}}, \ldots, p_{t}^{\alpha_{1}}$ with one of $\alpha_{i}=1,1 \leq i \leq t$. Does it imply Z_{m} has a subset having p_{i} elements which forms a field?

Problem 2: If Z_{m} is as in Problem 1, can Z_{m} contain any other subset other than the one mentioned in there to be a field?
Further we propose the following problem.
Problem 3: Let Z_{m} be the ring of integers modulo m that is a SmarandacheGalois field. Let $A \subset Z_{m}$ be a subfield of Z_{m}. Then prove $|A| / m$ and $|A|$ is a prime and not a power of prime.
A natural question now would be: Can we have Smarandache-Galois fields of order p^{n} where p is a prime? When we say order of the Smarandache-Galois field we mean only the number of elements in the Smarandache Galois field. That is like in Example 3 the order of the Smarandache-Galois field is 6 . The answer to this question is yes.

Example 7: Let $Z_{p}[x]$ be the polynomial ring in the variable x over the field Z_{p} (p a prime). Let $p(x)=p_{o}+p_{1} x+\ldots+p_{n} x^{n}$ be a reducible polynomial of degree n over Z_{p}. Let I be the ideal generated by $p(x)$ that is $I=\langle p(x)\rangle$.

Now $\frac{Z_{p}[x]}{I=\langle p(x)\rangle}=\mathrm{R}$ is a ring.

Clearly R has a proper subset A of order p which is a field. So their exists Smarandache-Galois field of order p^{n} for any prime p and any positive integer n.

Example 8: Let $\mathrm{Z}_{3}[\mathrm{x}]$ be the polynomial ring with coefficients from the field Z_{3}. Consider $x^{4}+x^{2}+1 \in Z_{3}[x]$ is reducible. Let I be the ideal generated by $x^{4}+x^{2}+1$. Clearly $R=\frac{Z_{3}[x]}{I}=\{I, I+1, I+2, I+x, I+2 x, I+x+1, I+x+2$, $\left.I+2 x+1, I+2 x+2, I+x^{2}, I+x^{3}, \ldots, I+2 x+2+2 x^{2}+2 x^{3}\right\}$ having 81 elements. Now
$\{I, I+1, I+2\} \subseteq R$ is a field. So R is a Smarandache-Galois field of order 3^{4}.
Theorem 5: A finite ring is a Smarandache ring if and only if it is a Smarandache-Galois field.

Proof: Let R be a finite ring that is a Smarandache ring then, by the very definition, R has a proper subset which is a field. Thus R is a SmarandacheGalois field.
Conversely, if R is a Smarandache-Galois field then R has a proper subset which is a field. Hence R is a Smarandache ring.

This theorem is somewhat analogous to the classical theorem "Every finite integral domain is a field" for "Every finite Smarandache ring is a Smarandache-Galois field".

Definition 6: Let R and S be two Smarandache-Galois fields. ϕ, a map from R to S , is a Smarandache-Galois field homomorphism if ϕ is a ring homomorphism from R to S .

Definition 7: Let R and S be Smarandache Galois fields. We say ϕ from R to S is a Smarandache-Galois field isomorphism if ϕ is a ring isomorphism from R to S .

Definition 9: Let Z_{m} be a Smarandache field. $A \subset Z_{m}$ be a subfield of Z_{m}. Let $r \in A$ such that $r \neq 0, r^{2}=r(\bmod m)$ acts as the multiplicative identity of A. Define $\frac{Z_{m}}{\{A\}}=\{0,1,2, \ldots, r-1\}$. We call $\frac{Z_{m}}{\{A\}}$ the Smarandache quotient ring and the operation on $\frac{Z_{m}}{(A)}=\{0,1, \ldots, r-1\}$ is usual addition and multiplication modulo r.

Theorem 9: Let Z_{m} be a Smarandache-Galois field. $A \subset Z_{m}$ be a subfield of $Z_{m} \cdot \frac{Z_{m}}{\{A\}}$ the Smarandache quotient ring need not in general be a Smarandache ring or equivalently a Smarandache-Galois field.

Proof: By an example. Take $Z_{24}=\{0,1,2, \ldots, 23\}$ be the ring of integers modulo 24. Let $A=\{0,8,16\} ; 16^{2}=16(\bmod 24)$ acts as multiplicative identity for A. $\frac{Z_{24}}{\{A\}}=\{0,1,2, \ldots, 15\}$. Clearly $\frac{Z_{24}}{\{A\}}$ is not a Smarandache ring or a Smarandaçhe-Galois field.

Thus, motivated by this we propose the following:
Problem 4: Find conditions on m for Z_{m} to have its Smarandache quotient ring to be a Smarandache ring or Smarandache-Galois field.

Example 10: $\mathrm{Z}_{12}=\{0,1, \ldots, 11\}$ is the ring of integers modulo 12. $\mathrm{A}=\{0,4$, $8\}$ is a field with $4^{2}=4(\bmod 12)$ as multiplicative identity. $\frac{Z_{12}}{\{0,4,8\}}=\{0,1,2$,
$3\}(\bmod 4)$ is not a Smarandache-Galois field or a Smarandache ring.
Example 11: $\mathrm{Z}_{21}=\{0,1,2, \ldots, 20\}$ is the ring of integers modulo 21. $\mathrm{A}=\{0$, $7,14\}$ is a subfield. $\frac{Z_{21}}{\{A\}}=\{0,12, \ldots, 6\} \bmod 7$ is not a Smarandache-Galois field. Let $B=\{0,3,6,9,12,15,18\} \subseteq Z_{21}$. Clearly B is a field with $15^{2}=15(\bmod 21)$
as a multiplicative unit. Now, $\frac{\mathrm{Z}_{21}}{\{0,3,6,9,12,15,18\}}=\{0,1,2, \ldots, 14\}$ is a SmarandacheGalois field.

Thus we have the following interesting:
Problem 5: Let Z_{m} be the Smarandache ring. Let A be a subset which is a field. When does an A exist such that $\frac{Z_{m}}{A}$ is a Smarandache-Galois field?

References:

[1] I. N. Herstein, Topics in Algebra, New York, Blaisdell, 1964.
[2] Padilla, Raul. Smarandache Algebraic Structures, Bulletin of Pure and Applied Sciences, Delhi, Vol. 17 E., No. 1, 119-121, 1998;
http://www.gallup.unm.edu/~smarandache/ALG-S-TXT.TXT.

