SMARANDACHE NEAR-RINGS AND THEIR GENERALIZATIONS

W. B. Vasantha Kandasamy
Department of Mathematics
Indian Institute of Technology, Madras
Chennai-600 036, India.
E-mail:vasantak@md3.vsnl.net.in

Abstract

In this paper we study the Smarandache semi-near-ring and nearring, homomorphism, also the Anti-Smarandache semi-near-ring. We obtain some interesting results about them, give many examples, and pose some problems. We also define Smarandache semi-near-ring homomorphism.

Keywords: Near-ring, Semi-near-ring, Smarandache semi-near-ring, Smarandache near-ring, Anti-Smarandache semi-near-ring, Smarandache semi-near-ring homomorphism,

Definition [1 Pilz]: An algebraic system ($\mathrm{N},+, \bullet$) is called a near-ring (or a right near-ring) if it satisfies the following three conditions:
(i) $(\mathrm{N},+)$ is a group (not necessarily abelian).
(ii) (N, \bullet) is a semigroup.
(iii) $\left(n_{1}+n_{2}\right) \bullet n_{3}=n_{1} \bullet n_{3}+n_{2} \bullet n_{3}$ (right distributive law) for all $n_{1}, n_{2}, n_{3} \in$ N .

Definition [1 Pilz]: An algebraic system (S, $+\bullet$) is called a semi-near-ring (or right semi-near-ring) if it satisfies the following three conditions:
(i) $(S,+)$ is a semigroup (not necessarily abelian).
(ii) $\quad(\mathrm{S}, \bullet)$ is a semigroup.
(iii) $\left(n_{1}+n_{2}\right) \bullet n_{3}=n_{1} \bullet n_{3}+n_{2} \bullet n_{3}$ for all $n_{1}, n_{2}, n_{3} \in S$ (right distributive law).

Clearly, every near-ring is a semi-near-ring and not conversely. For more about semi-near-rings please refer [1], [4], [5], [6], [7], [8] and [9].

Definition 1: A non-empty set N is said to be a Smarandache semi-near-ring if $(N,+, \bullet)$ is a semi-near-ring having a proper subset $A(A \subset N)$ such that A under the same binary operations of N is a near-ring, that is $(A,+, \bullet)$ is a nearring.

Example 1: Let $\mathrm{Z}_{18}=\{0,1,2,3, \ldots, 17\}$ integers modulo 18 under multiplication. Define two binary operations \times and \bullet on Z_{18} as follows: \times is the usual multiplication so that $\left(\mathrm{Z}_{18}, \times\right)$ is a semigroup;
$a \bullet b=a$ for all $a, b \in Z_{18}$.
Clearly $\left(\mathrm{Z}_{18}, \bullet\right)$ is a semigroup under \bullet. $\left(\mathrm{Z}_{18}, \times, \bullet\right)$ is a semi-near-ring. $\left(\mathrm{Z}_{18}, \times\right.$, -) is a Smarandache semi-near-ring, for take $A=\{1,3,5,7,11,13,17\}$. (A, \times,
-) is a near ring. Hence the claim.
Theorem 2: Not all semi-near-rings are in general Smarandache semi-nearrings.

Proof: By an example.
Let $\mathrm{Z}^{+}=\{$set of positive integers $\} . \mathrm{Z}^{+}$under + is a semigroup. Define \cdot a binary operation on Z^{+}as $\mathrm{a} \bullet \mathrm{b}=$ a for all $\mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+}$. Clearly Z^{+}under \bullet is a semigroup. Now $\left(Z^{+},+, \bullet\right)$ is a semi-near-ring which is not a Smarandache semi-near-ring.

Now we give an example of.
Example 2 (of an infinite Smarandache semi-near-ring):
Let $\mathrm{M}_{\mathrm{n} \times \mathrm{n}}=\left\{\left(\mathrm{a}_{\mathrm{ij}}\right) / \mathrm{a}_{\mathrm{ij}} \in \mathrm{Z}\right\}$. Define matrix multiplication as an operation on $\mathrm{M}_{\mathrm{n} \times \mathrm{n}}$. ($M_{n \times n}, X$) is a semigroup. Define '•' on $M_{n \times n}$ as $A \cdot B=A$ for all $A, B \in M_{n \times n}$. Clearly $\left(\mathrm{M}_{\mathrm{n} \times \mathrm{n}}, \times, \bullet\right)$ is a Smarandache semi-near-ring, for take the set of all $\mathrm{n} \times \mathrm{n}$ matrices A such that $|A| \neq 0$. Denote the collection by $A_{n \times n} . A_{n \times n} \subset M_{n \times n}$ Clearly ($\mathrm{A}_{\mathrm{n} \times \mathrm{n}}, \times, \bullet$) is a near-ring.

Example 3:

Let $Z_{24}=\{0,1,2, \ldots, 23\}$ be the set of integers modulo 24. Define usual multiplication \times on Z_{24}. $\left(\mathrm{Z}_{24}, \times\right.$) is a semigroup. Define ' \bullet ' on Z_{24} as $\mathrm{a} \cdot \mathrm{b}=\mathrm{a}$ for all $a, b \in Z_{24}$. Clearly Z_{24} is a semi-near-ring. Now Z_{24} is also a Smarandache semi-near-ring. For take $\mathrm{A}=\{1,5,7,11,13,17,19,23\} .(\mathrm{A}, \mathrm{x}$, -) is a near-ring. So, Z_{24} is a Smarandache semi-near-ring.

Motivated by the examples 3 and 4 we propose the following open problem.
Problem 1: Let $\mathrm{Z}_{\mathrm{n}}=\{0,1,2, \ldots, \mathrm{n}-1\}$ set of integers. $\mathrm{n}=p_{1}^{\alpha_{1}} \ldots p_{1}^{\alpha_{1}}$, where p_{1}, p_{2}, \ldots, p_{t} are distinct primes, $t>1$. Define two binary operations ' x ' and ' \cdot ' on $\mathrm{Z}_{\mathrm{n}} . \times$ is the usual multiplication. Define ' \cdot ' on Z_{n} as $\mathrm{a} \cdot \mathrm{b}=\mathrm{a}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$. Let $A=\left\{1, q_{1}, \ldots, q_{r}\right\}$ where q_{1}, \ldots, q_{r} are all odd primes different from p_{1}, \ldots, p_{t} and $q_{1}, \ldots, q_{r} \in Z_{n}$.

Prove A is a group under \times. Solution to this problem will give the following:
Result: $\mathrm{Z}_{\mathrm{n}}=\{0,1,2, \ldots, \mathrm{n}-1\}$ is a Smarandache semi-near-ring under \times and \bullet defined as in Examples 1 and 3. Thus we get a class of Smarandache semi-near-rings for every positive composite integer. Now when $t=1$ different cases arise.

Example 4: $Z_{4}=\{0,1,2,3\}$ is a Smarandache semi-near-ring as $\left(Z_{4}, \times, \bullet\right)$ is a semi-near-ring and $(A=\{1,3\}, \times, \bullet)$ is a near-ring.

Example 5: $Z_{9}=\{0,1,2,3,4, \ldots, 8\}$. Now $\left(Z_{9}, \times, \bullet\right)$ is a semi-near-ring. $(A=$ $\{1,8\}, \times, \bullet$) is a near-ring so Z_{9} is a Smarandache near-ring. Clearly 8 is not a prime number.

Example 6: Let $\mathrm{Z}_{25}=\{0,1,2,3, \ldots, 24\}$. Now $\left(\mathrm{Z}_{25}, \times, \bullet\right)$ is a semi-near-ring. $\{\mathrm{A}=\{1,24\}, \times, \bullet\}$ is a near-ring. Thus Z_{25} is a Smarandache semi-near-ring.

Theorem 3: Let $\left(Z_{p^{2}}, x, \bullet\right)$ be a semi-near-ring. Clearly $\left(Z_{p^{2}}, \times, \bullet\right)$ is a Smarandache semi-near-ring.

Proof: Let $\left(A=\left\{1, p^{2}-1\right\}, \times, \bullet\right)$ is a near-ring. Hence $\left\{Z_{p^{2}}, \times, \bullet\right)$ is a Smarandache semi-near-ring.

Hence we assume $t>1$, for non primes one can contribute to near -ring under (\times, \bullet).

Corollary: Let $\left(Z_{p^{n}}, \times, \bullet\right)$ be a semi-near-ring. $\left(Z_{p^{n}}, \times, \bullet\right)$ is a Smarandache near-ring.

Proof: Take $A=\left\{1, \mathrm{p}^{\mathrm{n}}-1\right\}$ is a near-ring. Hence $\left(\mathrm{Z}_{\mathrm{p}^{a}}, \times, \bullet\right)$ is a Smarandache semi-near-ring.

Thus we have a natural class of finite Smarandache semi-near-rings.
Definition 4 (in the classical way):
N is said to be a Smarandache near-ring if $(\mathrm{N},+, \bullet)$ is a near-ring and has a proper subset A such that $(A,+, \bullet)$ is a near-field.

Now many near-rings contain subsets that are semi-near-rings, so we are forced to check:

Definition 5: N is said to be an Anti-Smarandache semi-near-ring if N is a near-ring and has a proper subset A of N such that A is a semi-near-ring under the same operations of N .

Example 7: Let Z be the set of integers under usual + and multiplication ' \cdot ' by $a \bullet b=a$ for all $a, b \in Z .(Z,+, \bullet)$ is a near-ring. Take $A=Z^{+}$now $\left(Z^{+},+, \bullet\right)$ is a semi-near-ring. So Z is an Anti-Smarandache semi-near-ring.

Example 8: Let $\mathrm{M}_{\mathrm{n} \times \mathrm{n}}=\left\{\left(\mathrm{a}_{\mathrm{ij}}\right) / \mathrm{a}_{\mathrm{ij}} \in \mathrm{Z}\right\}$. Define + on $\mathrm{M}_{\mathrm{n} \times \mathrm{n}}$ as the usual addition
of matrices and define \bullet on $M_{n \times n}$ by $A \cdot B=A$ for all $A, B \in M_{n \times n} .\left(M_{n \times n},+, \bullet\right)$ is a near-ring. Take $A_{n \times n}=\left\{\left(a_{i j}\right) / a_{i j} \in Z^{+}\right\}$. Now $(A,+, \bullet)$ is a semi-near-ring. Thus $\mathrm{M}_{n \times n}$ is an Anti-Smarandache semi-near-ring.

We propose the following:
Problem 2: Does there exist an infinite near-ring constructed using reals or integers, which is not an Anti-Smarandache semi-near-ring?

Example 9: $\mathrm{Z}[\mathrm{x}]$ is the polynomial ring over the ring of integers. Define + on $\mathrm{Z}[\mathrm{x}]$ as the usual addition of polynomials. Define an operation \cdot on $\mathrm{Z}[\mathrm{x}]$ as $p(x) \cdot q(x)=p(x)$ for all $p(x), q(x) \in Z[x]$. Clearly $(Z[x],+, \bullet)$ is an AntiSmarandache semi-near-ring, for $\left(\mathrm{Z}^{+}[\mathrm{x}],+, \bullet\right)$ is a semi-near-ring.

Now it is still more interesting to find a solution to the following question (or Problem 2 worded in a negative way):

Problem 3: Find a finite Anti-Smarandache semi-near-ring.
Definition 6: Let N and N_{1} be two Smarandache semi-near-rings. A mapping $h: N \rightarrow N_{1}$ is a Smarandache semi-near-ring homomorphism if h is a homomorphism.

Similarly one defines the Anti-Smarandache semi-near-ring homomorphism:
Definition 7: Let N and N_{1} be two Anti-Smarandache semi-near-rings. Then $h: N \rightarrow N_{1}$ is an Anti-Smarandache semi-near-ring homomorphism if h is a homomorphism.

References:

[1] G. Pilz, Near-rings, North - Holland Publ. and Co. (1977).
[2] J. Castillo, The Smarandache Semigroup, International Conference on Combinatorial Methods in Mathematics, II Meeting of the project 'Algebra, Geometria e Combinatoria', Faculdade de Ciencias da Universidade do Porto, Portugal, 9-11 July 1998.
[3] R. Padilla, Smarandache Algebraic Structures, Bulletin of Pure and Applied Sciences, Delhi, Vol. 17 E., No. 1, 119-121, (1998) http://www.gallup.unm.edu/~smarandache/ALG-S-TXT.TXT
[4] W. B. Vasantha Kandasamy, Idempotents in group semi-near-ring, IPB Bulletin Sci., 13-17, (1991).
[5] W. B. Vasantha Kandasamy, Zero divisors in group semi-near-rings, Riazi J. Karachi Math. Assoc., Vol. 14, 25-28, (1992).
[6] W. B. Vasantha Kandasamy, Zero divisors in semi-loop near-rings, Zeszyty Nauk. Poli Rzesz., (79-84, 1994).
[7] W. B. Vasantha Kandasamy, The units of semigroup semi-near-rings, Opscula Math., Vol. 15, 113-114, (1995).
[8] W. B. Vasantha Kandasamy, Complex Polynomial near-rings, Analele Stiin. Ale Univ., Vol. IV, 29-31, (1995).
[9] W. B. Vasantha Kandasamy, Idempotents and semi-idempotensts in near-rings, J. of Sichuan Univ. Vol. 33, 330-332, (1996).

