SMARANDACHE RECIPROCAL FUNCTION AND AN ELEMENTARY INEQUALITY

(Amarnath Murthy, S.E.(E\&T), Well Logging Services, ONGC, Sabarmati, Ahmedabad, INDIA)

The Smarandache Function is defined as $S(n)=k$. Where k is the smallest integer such that n divides k !

Let us define $\mathrm{S}_{\mathrm{c}}(\mathrm{n})$ Smarandache Reciprocal Function as follows:
$S_{c}(\mathrm{n})=\mathrm{x}$ where $\mathrm{x}+1$ does not divide n ! and for every $\mathrm{y} \leq \mathrm{x}, \mathrm{y} \mid \mathrm{n}$!

THEOREM-I.

If $S_{c}(n)=x$, and $n \neq 3$, then $x+1$ is the smallest prime greater than n.
PROOF: It is obvious that n ! is divisible by $1,2, \ldots$ up to n. We have to prove that n ! is also divisible by $\mathrm{n}+1, \mathrm{n}+2, \ldots \mathrm{n}+\mathrm{m}(=\mathrm{x})$, where $n+m+1$ is the smallest prime greater than $n .$. Let r be any of these composite numbers. Then r must be factorable into two factors each of which is ≥ 2. Let $r=p . q$, where $p, q \geq 2$. If one of the factors (say q) is $\geq \mathrm{n}$ then $\mathrm{r}=\mathrm{p} \cdot \mathrm{q} \geq 2 \mathrm{n}$. But according to the Bertrand's postulate there must be a prime between n and 2 n , there is a contradiction here since all the numbers from $n+1$ to $n+m(n+1 \leq r<n+m)$ are assumed to be composite. Hence neither of the two factors p, q can be $\geq \mathrm{n}$. So each must be $<\mathrm{n}$. Now there are two possibilities:

Case-I

$$
\mathrm{p} \neq \mathrm{q} .
$$

In this case as each is $<n$ so $p . q=r$ divides n !
Case-II $\quad \mathrm{p}=\mathrm{q}=$ prime
In this case $r=p^{2}$ where p is a prime. There are again three possibilities:
(a) $\mathrm{p} \geq 5$. Then $\mathrm{r}=\mathrm{p}^{2}>4 \mathrm{p} \Rightarrow 4 \mathrm{p}<\mathrm{r}<2 \mathrm{n} \Rightarrow 2 \mathrm{p}<\mathrm{n}$. Therefore both p and $2 p$ are less than n so p^{2} divides n !
(b) $\mathrm{p}=3$, Then $\mathrm{r}=\mathrm{p}^{2}=9$ Therefore n must be 7 or 8 . and 9 divides 7 ! and $8!$.
(c) $\mathrm{p}=2$, then $\mathrm{r}=\mathrm{p}^{2}=4$. Therefore n must be 3 . But 4 does not divide 3 !, Hence the theorem holds for all integral values of n except $n=3$. This completes the proof.

Remarks: Readers can note that n ! is divisible by all the composite numbers between n and $2 n$.

Note: We have the well known inequality $\mathrm{S}(\mathrm{n}) \leq \mathrm{n}$.
From the above theorem one can deduce the following inequality.
If p_{r} is the $r^{\text {th }}$ prime and $p_{r} \leq n<p_{r+1}$ then $S(n) \leq p_{r}$. (A slight improvement on (2)).
i.e. $S\left(p_{r}\right)=p_{r}, S\left(p_{r}+1\right)<p_{r}, S\left(p_{r}+2\right)<p_{r}, \ldots S\left(p_{r+1}-1\right)<p_{r}, S\left(p_{r+1}\right.$,
$=p_{r+1}$
Summing up for all the numbers $\mathrm{p}_{\mathrm{r}} \leq \mathrm{n}<\mathrm{p}_{\mathrm{r}+1}$ one gets

$$
\sum_{t=0}^{p_{r-1}-p_{r}-1} S\left(p_{r}+t\right) \leq\left(p_{r+1}-p_{r}\right) p_{r}
$$

Summing up for all the numbers up to the $s^{\text {th }}$ prime, defining $p_{0}=1$, wt get

$$
\begin{equation*}
\sum_{k=1}^{p \cdot} S(k) \leq \sum_{r=0}^{s}\left(p_{r+1}-p_{r}\right) p_{r} \tag{3}
\end{equation*}
$$

More generally from Ref. [1] following inequality on the nth partial sum of the Smarandache (Inferior) Prime Part Sequence directly follows.

Smarandache (Inferior) Prime Part Sequence

For any positive real number n one defines $p_{p}(n)$ as the largest prime number less than or equal to n. In [1] Prof. Krassimir T.

Atanassov proves that the value of the $n^{\text {th }}$ partial sum of this sequence $X_{n}=\sum_{k=1}^{n} p_{p}(k)$ is given by
$X_{n}=\sum_{k=2}^{\pi(n)}\left(\mathbf{p}_{k}-\mathbf{p}_{k-1}\right) \cdot \mathbf{p}_{k-1}+\left(\mathbf{n}-\mathbf{p}_{\pi(n)}+1\right) \cdot \mathbf{p}_{\pi(n)}$

From (3) and (4) we get

$$
\sum_{k=1}^{n} S(k) \leq X_{n}
$$

REFERENCES:

[1] "Krassimir T. Atanassov", ' ON SOME OF THE SMARANDACHE'S PROBLEMS' AMERICAN RESEARCH PRESS Lupton, AZ USA. 1999. (22-23)
[2] "The Florentine Smarandache "Special Collection, Archives of American Mathematics, Centre for American History, University of Texax at Austin, USA.
[3] 'Smarandache Notion Journal' Vol. 10 ,No. 1-2-3, Spring 1999. Number Theory Association of the UNIVERSITY OF CRAIOVf

