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ABSTRACT: Expression of unity as the sum of the reciprocals 

of natural numbers is explored. And in this connection 

Smarandache Reciprocal partition of unity sets and sequences are 

defined. Some results and Inequalities are derived and a few open 

problems are proposed. 

DISCUSSION: 

Define Smarandache. Repeatable Reciprocal partition of unity 

set as follows: 
n 

SRRPS(n) = {x I x = ( a1, a2, ... , an ) where I (1/a r ) = 1.} 

fRP(n) = order of the set SRRPS(n). 

We have 

SRRPS(1) = {(1)}, fRP(1) = 1. 

SRRPS(2) = { (2,2) } , f RP (2) = 1. 

r= 1 

SRRPS(3) = { (3,3,3),(2,3,6), (2,4,4) } , fRP(3) = 3.,1 = 1/2 + 1/3 + 
1/6 etc. 

SRRPS(4) = { (4,4,4,4), (2,4,6,12), (2,3,7,42), (2,4,5,20), 

(2,6,6,6),(2,4,8,8,),(2,3,12,12), (4,4,3,6), (3,3,6,6), (2,3,10,15)} 

fRP(4) = 10. 

SMARANDACHE REPEATABLE RECIPROCAL PARTITION OF 

UNITY SEQUENCE is defined as 
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1,"1,3,10 ... 

where the nth term = fRP(n) . 

Define SMARANDACHE DISTINCT RECIPROCAL PARTITION OF 

UNITY SET 

as follows 
n 

SDRPS(n) = { x I x = (a1, a2, ... , an) where I (1/a r ) = 1 and aj = 
a j <=> i = j} r= 1 

fop(n) = order of SDRPS(n). 

SDRPS(1) = {(1)}, fop(1) = 1. 

SDRPS(2) = { }, fRP(2) = o. 

SDRPS(3) = { (2,3,6) } , fo~(3) = 1. 

SRRPS(4) = {(2,4,6,12), (2,3,7,42), (2,4,5,20),(2,3,10,15)} 

fop(4) = 4. 

Smarandache Distinct Reciprocal partition of unity sequences 

defined as follows 
1,0,1,4,12 ... 

the nth term is fop(n). 

Following Inequality regarding the function fop(n) has been 

established. 

THEOREM(1.1 ) 

n-1 

fop(n) ~ L fop(k) + (n 2 
- 5n + 8)/2 ,n > 3 

k=3 

This inequality will be established in two steps. 
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Proposition (1.A) 

For every n there exists a set of n natural numbers sum of 

whose reciprocais is 1. 

Proof: This wi" be proved by induction. Let the proposition be true 

for n = r. 

Let a1 < a2 < a3 < ... <an-1 < an = k be r distinct natural numbers 

such that 

1/a1 + 1/a2 + 1/a3 + ... + 1/a r = 1 

We have, 11k = 1 /(k+1) + 11 (k(k+1)) , which gives us a set of r+1 

distinct numbers a1 < a2 < a3 < ... < a r-1 < k+1 < k(k+1), sum of 

whose reciprocals is 1. 

P(r) => P(r+1) , and as P(3) is true I.e. 1/2 + 1/3 + 1/6 = 1 , 

·The proposition is true for a" n. 

This completes the proof of proposition (1.A). 

Note: If a1 ,a2 , a3 , ... an-1 are n-1 distinct natural numbers 

given by 

a1 = 2. 
a2 = a1 + 1. 
a3 = a1a2 + 1 

an-2 = a1a2a3 ... an-3 + 1 
an-1 = a1 a2a3··· an-2 
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then these numbers form a set of (n - 1) distinct natural numbers 
such that 

n-1 

I 1 fat = 1. 
t= 1 

we have at = at-1(at-1 - 1) + 1 except when t = n - 1 in which 

case 

Let the above set be called Principle Reciprocal Partition. 

*** It can easily be proved in the above set that 

a2t == 3 mod(10) and a2t+1 == 7 mod (10) for t 2: 1. 

Consider the principle reciprocal partition for n-1 numbers. Each 

at contributes one to fop(n) if broken into at + 1 , at(at + 1) except 

for t = 1. (as 2, if broken into 3 and 6, to give 1/2 =1/3 + 116, the 

number 3 is repeated and the condition of all distinct number is 

not fulfilled). There is a contribution of n - 2 from the principle set 

to fop(n). The remaining fop(n- 1) -1 members (excluding the 

p ri nciple partition) of SO R P S (n-1) wou Id contribute at least one 

each to fop(n) (breaking the largest number in each such set into 

two parts) . The contribution to fop(n) thus is at least 

n-2 + fop(n-1) - 1 = fop(n-1) + n - 3 

----------(1.2) 
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Also for each member (b 1 , b2 , ... , bn - 1 ) of SDRPS(n-1) there 

exists a member of SDRPS(n) i.e. (2, 2b 1 ,2b 2 , ... ,2b n- 1 ) as we 

can see that 

1 = (1/2)( 1+ 1/b 1 + 1/b2 + ... + 1/b n- 1 ) = 1/2 +1/2b 1 + + 

1/2b n_1 . 

In this way there is a contribution of fop(n-1) to fop(n) . -------(1.3) 

Taking into account all these contributions to fop(n) we get 

fop(n) 2 fop(n-1) + n - 3 + fop(n-1) 

fop(n) 2 2fop(n-1) + n - 3 

fop(n) - fop(n-1) 2 fop(n-1) + n - 3 -------------(1.4) 

from (4) by replacing n by n-1 , n-2 ,etc. we get 

fop(n-1) - fop(n-2) 2 fop(n-2) + n - 4 

fop(n-2) - fop(n-3) 2 fop(n-3) + n - 5 

fop(4) - fop(3) 2 fop(3) + 1 

summing up all the above inequalities we get 

n-1 n-1 . 
fop(n) - fop(3) 2 L fop(k) + L r 

k=3 r= 1 

n-1 

fop(n) 2 L fop(k) + (n-3)(n-2)/2 + 1 
k=3 

n-1 

fop(n) 2 I fop(k) + (n 2 -5n +8)/2 , n > 3 
k=3 
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Remarks: Readers can come up with stronger results as in my 

opinion the order of fop(n) should be much more than what has 

been arrived at. This will be clear from the following theorem. 

THEOREM(1.2): 

If m is a member of an element of SRRPS(n) say, 

n 

(a1, a2, a3 , ... , an ).We have ak = m for some k and L 1/ak = 1. 
k=1 

then m contributes [{d(m) + 1}/2 ] elements to SRRPS(n+1), 

where the symbol [] stands for integer value and d(m) is the 

number of divisors of m. 

Proof: For each divisor d of m there corresponds another 

divisor mid =d'. 

Case-I: m is not a perfect square. Then d(m). is even and there 

are d(m)/2 pairs of the type (d,d') such that dd' = m . 

Consider the following identity 

1/(p.q) = 1/(p(p +q)) + 1/(q(p+q)) ------------ (1 .5) 

for each divisor pair (d,d') of m we have the following breakup 

1/(d.d') = 1/(d(d+d')) + 1/(d'(d+d')) 

Hence the contribution of m to SRRPS(n+1) IS d(m)/2. As d(m) 

is even d(m)/2 = [ {d(m) +1}/2] Also. 
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Case-II m is a perfect square. In this case d(m) is odd and there 

is a divisor pair d=d' = m 1/2 
. This will contribute one to 

SRRPS(n+1) .The remaining {d(m) -1}/2 pairs of distinct divisors 

will contribute as many i.e. say ({d(m) -1}/2) .Hence the total 

contribution in this case would be 

{d(m) -1 }/2 + 1 = {d(m) +1 }/2 =[ {d(m) +1 }/2] 

Hence m contributes [{d(m) + 1}/2 J elements to SRRPS(n+1) 

This completes the proof. 

Remarks:(1) The total contribution to SRRPS(n+1) by any element 

of SRRPS(n) is L [ {d(ak ) + 1}/2] --------- (1 .6), 

where each ak IS considered only once irrespective of its' 

repeated occurrence. 

(2) In case of SDRPS(n+1) , the contribution by an element of 

SDRPS(n) is given by 

n 
L [{d(ak )}/2 ] 
k=1 

-----------( 1.7) 

because the divisor pair d =d'= ak 1/2 does not contribute. 

Hence the total contribution of SDRP(n) to generate SDRPS(n+1) 

is the summation over all the elements of SDRPS(n) . 

n 
L {L [{d(ak )}/2 1 } ----------- (1.8) 
fop(n) k=1 

Generalizing the above approach. 
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The readers can further extend this work by considering the 

following identity 

1 111 
= + + ----(1.9) 

pqr pq(p+q+r) qr(p+q+r) rp(p+q+r) 

which also suggests 

1 r r r 

= -------( 1 .1 0) 
k=1 t=1,t;l!:k 5=1 

The above identity can easily be established by just summing up 

the right hand member. 

From (1.10), the contribution of the elements of SDRPS(n) to 

SDRPS(n+r) can be evaluated if an answer to following tedious 

querries could be found. 

OPEN PROBLEMS: 

(1) In how many ways a number can be expressed as the product 

of 3 of its divisors? 

(2) In general in how many ways a number can be expressed as 

the product of r of its' divisors? 

(3) Finally in how many ways a number can be expressed as the 

product of its divisors? 

225 



An attempt to get the answers to the above querries leads to the 

need of the generalization of the theory of partition function. 
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