Smarandache Zero Divisors

W.B.Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai- 600036

ABSTRACT

In this paper, we study the notion of Smarandache zero divisor in semigroups and rings. We illustrate them with examples and prove some interesting results about them.

Keywords: Zero divisor, Smarandache zero divisor

Throughout this paper, S denotes a semigroup and R a ring. They need not in general be Smarandache semigroups or Smarandache rings respectively. Smarandache zero divisors are defined for any general ring and semigroup.

Definition 1 Let S be any semigroup with zero under multiplication (or any ring R). We say that a non-zero element $a \in S$ (or R) is a Smarandache zero divisor if there exists a non-zero element b in S (or in R) such that a.b = 0 and there exist x, $y \in S \setminus \{a, b, 0\}$ (or x, $y \in R \setminus \{a, b, 0\}$), $x \neq y$, with

- 1. ax = 0 or xa = 0
- 2. by = 0 or yb = 0 and
- 3. $xy \neq 0$ or $yx \neq 0$

Remark If S is a commutative semigroup then we will have ax = 0 and xa = 0, yb = 0 and by = 0; so what we need is at least one of xa or ax is zero 'or' not in the mutually exclusive sense.

Example 1 Let $Z_{12} = \{0, 1, 2, ..., 11\}$ be the semigroup under multiplication. Clearly, Z_{12} is a commutative semigroup with zero. We have $6 \in Z_{12}$ is a zero divisor as $6.8 \equiv 0 \pmod{12}$. Now 6 is a Smarandache zero divisor as $6.2 \equiv 0 \pmod{12}$, $8.3 \equiv 0 \pmod{12}$ and $2.3 \not\equiv 0 \pmod{12}$. Thus 6 is a Smarandache zero divisor. It is interesting to note that for $3 \in Z_{12}$, $3.4 \equiv 0 \pmod{12}$ is a zero divisor, but 3,4 is not a Smarandache zero divisor for there does not exist a $x, y \in Z_{12} \setminus \{0\}$ x $\neq y$ such that $3.x \equiv 0 \pmod{12}$ and $4y \equiv 0 \pmod{12}$ with $xy \not\equiv 0 \pmod{12}$.

This example leads us to the following theorem.

Theorem 2 Let S be a semigroup under multiplication with zero. Every Smarandache zero divisor is a zero divisor, but not reciprocally in general.

Proof: Given S is a multiplicative semigroup with zero. By the very definition of a Smarandache zero divisor in S we see it is a zero divisor in S. But if x is a zero divisor in S, it need not in general be a Smarandache zero divisor of S. We prove this by an example. Consider the semigroup Z_{12} given in example 1. Clearly 3 is a zero divisor in Z_{12} as $3.4 \equiv 0(12)$ but 3 is not a Smarandache zero divisor of 12.

Example 2 Let $S_{2\times2} = \left\{ \begin{pmatrix} a & b \\ c & b \end{pmatrix} \middle/ a, b, c, d \in Z_2 = \{0,1\} \right\}$ be the set of all 2 × 2 matrices with entries from the ring of integers modulo 2. $S_{2\times2}$ is a semigroup under matrix multiplication modulo two. Now $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ in $S_{2\times2}$ is a zero divisor as $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in S_{2\times2}$ is such that $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. For $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Now take $\mathbf{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ in $S_{2\times2}$. We have $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ but $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is a Smarandache zero divisor of the semigroup $S_{2\times2}$.

Example 3 Let $R_{3\times3} = \{(a_{ij}) \text{ such that } a_{ij} \in Z_4 = \{0,1,2,3\}\}$ be the collection of all 3×3 matrices with entries from Z_4 . Now $R_{3\times3}$ is a ring under matrix addition and multiplication modulo four. We have

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \in \mathbb{R}_{3\times 3} \text{ is a Smarandache zero divisor in } \mathbb{R}_{3\times 3}.$$

For

Ó) 0 0 $\begin{array}{cccc} 0 & 0 \\ 1 & 0 \\ 2 & 2 \\ \end{array} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 2 & 2 \\ \end{array} \right) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right)$ Ó 0 0 Ó0 0 0 Ό 0 0 0 0 $\left[\begin{array}{ccc} 0 & 2 & 2 \\ \end{array} \right] \left[\begin{array}{ccc} 0 & 0 & 2 \\ \end{array} \right] \left[\begin{array}{ccc} 0 & 2 & 0 \\ \end{array} \right]$ 0 0 0 (1 0 0) So 0 0 0 is Smarandache zero-divisor in $R_{3\times 3}$. 0 0 2

Example 4: Let $Z_{20} = \{0, 1, 2, ..., 19\}$ be the ring of integers modulo 20. Clearly 10 is a Smarandache zero divisor. For 10 . 16 $\equiv 0 \pmod{20}$ and there exists 5, $6 \in Z_{20} \setminus \{0\}$ with

 $5 \times 16 \equiv 0 \pmod{20}$ $6 \times 10 \equiv 0 \pmod{20}$ $6 \times 5 \equiv 10 \pmod{20}.$

Theorem 3 Let R be a ring; a Smarandache zero divisor is a zero divisor, but not reciprocally in general.

Proof: By the very definition, we have every Smarandache zero divisor is a zero divisor. We have the following example to show that every zero divisor is not a Smarandache zero divisor. Let $Z_{10} = \{0, 1, 2, ..., 9\}$ be the ring of integers modulo 10.

Clearly 2 in Z_{12} is a zero divisor as $2.5 \equiv 0 \pmod{10}$ which can never be a Smarandache zero divisors in Z_{10} . Hence the claim.

Theorem 4 Let R be a non-commutative ring. Suppose $x \in \mathbb{R} \setminus \{0\}$ be a Smarandache zero divisor; with xy = yx = 0 and $a, b \in \mathbb{R} \setminus \{0, x, y\}$ satisfying the following conditions:

ax = 0 and xa ≠ 0,
yb = 0 and by ≠ 0 and
ab = 0 and ba ≠ 0.

Then we have $(xa + by)^2 = 0$.

Proof: Given $x \in \mathbb{R} \setminus \{0\}$ is a Smarandache zero divisor such that xy = 0 = yx. We have $a,b \in \mathbb{R} \setminus \{0,x,y\}$ such that ax = 0 and $xa \neq 0$, yb = 0 and $by \neq 0$ with ab = 0 and $ba \neq 0$. Consider $(xa + by)^2 = xaby + byxa + xaxa + byby using <math>ab = 0$, yx = 0, ax = 0 and yb = 0 we get $(xa + by)^2 = 0$.

Theorem 5 Let R be a ring having Smarandache zero divisor satisfying conditions of Theorem 5, then R has a nilpotent element of order 2.

Proof: By Theorem 5 the result is true.

We propose the following problems.

Problem 1: Characterize rings R in which every zero divisor is a Smarandache zero divisor.

4

Problem 2: Find conditions or properties about rings so that it has Smarandache zero divisors.

Problem 3: Does there exists rings in which no zero divisor is a Smarandache zero divisor?

Problem 4: Find group rings RG which has Smarandache zero divisors?

Problem 5: Let G be a group having elements of finite order and F any field. Does the elements of finite order in G give way to Smarandache zero divisors ?

REFERENCES

[1] Raul Padilla, Smarandache Algebraic Structures, Bulletin of Pure and Applied

Sciences, Delhi, Vol 17E, No 1, 119-121, (1998).

- [2] Florentin Smarandache, Special Algebraic Structures, in Collected Papers, Vol. III, Oradea, 2000.
- [3] W.B.Vasantha Kandasamy, On zero divisors in reduced group rings over ordered groups, Proc. of the Japan Academy Vol. 60, Ser A No 9, 353-359, (1984).
- [4] W.B.Vasantha Kandasamy, Zero Square Group Rings, Bull. of Cal. Math. Soc. 80, 105-106, (1988).
- [5] W.B.Vasantha Kandasamy, Zero divisors in Group Semi Near Ring, Riazi Journal Karachi Math. Assoc., Vol. 14, 25-28, (1992).
- [6] W.B.Vasantha Kandasamy, On a new type of group rings and its zero divisors, Ultra Scientist Phyl. Sciences, Vol. 6, 136-137, (1994).
- [7] W.B.Vasantha Kandasamy, Zero divisors in Semi-loop near rings, Matematyka, NR 127, 79-89, (1994).