SOLUTION OF TWO QUESTIONS CONCERNING THE DIVISOR FUNCTION AND THE PSEUDO – SMARANDACHE FUNCTION

Zhong Li

Abstract In this paper we completely solve two questions concerning the divisor function and the pseudo – Smarandache function.

Key words divisor function, pseudo - Smarandache function, functional equation

1 Introduction

Let
$$\mathbb N$$
 be the set of all positive integers . For any $n \in \mathbb N$, let

(1)
$$d(n) = \sum_{d \mid n} 1,$$

(2)
$$Z(n) = \min\{a \mid a \in \mathbb{N}, n \mid \sum_{j=1}^{a} j\}$$

Then d(n) and Z(n) are called the divisor function and the pseudo – Smarandache function of n, respectively, $\ln^{[1]}$, Ashbacher posed the following unsolved questions.

Question 1 How many solutions n are there to the functional equation.

(3)
$$Z(n) = d(n), n \in \mathbb{N}?$$

Question 2 How many solutions n are there to the functional equation.

(4) $Z(n) + d(n) = n, n \in \mathbb{N}?$

In this paper we completely solve the above questions as follows.

Theorem 1 The equation (3) has only the solutions n = 1, 3 and 10.

Theorem 2 The equation (4) has only the solution n = 56.

2 **Proof of Theorem 1**

A computer search showed that (3) has only the solutions n = 1,3 and 10 with $n \leq 10000$ (see ^[1])

We now let n be a solution of (3) with $n \neq 1,3$ or 10. Then we have n > 10000. Let

(5)
$$n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$$

be the factorization of n. By [2, Theorem 273], we get from (1) and (5) that

(6)
$$d(n) = (r_1 + 1)(r_2 + 1) \cdots (r_k + 1).$$

On the other hand, since $\sum_{j=1}^{a} j = a(a+1)/2$ for any $a \in \mathbb{N}$, we see from (2) that n |Z(n)(Z(n)+1)/2. It implies that $Z(n)(Z(n)+1)/2 \ge n$. So we have

(7)
$$Z(n) \ge \sqrt{2n + \frac{1}{4}} - \frac{1}{2}$$

Hence, by (3), (5), (6) and (7), we get

(8)
$$1 > \sqrt{2} \prod_{i=1}^{k} \frac{p_i^{r_i/2}}{r_i+1} - \frac{1}{2} \prod_{i=1}^{k} \frac{1}{r_i+1}$$

If $p_1 > 3$, then from (8) we get $p_1 \ge 5$ and

$$1 \ge \sqrt{2} (\frac{\sqrt{5}}{2})^k - \frac{1}{2^{k+1}} > 1,$$

a contradiction. Therefore, if (8) holds, then either $p_1 = 2$ or $p_1 = 3$. By the same method, then *n* must satisfy one of the following conditions.

(i) $p_1 = 2$ and $r_1 \le 4$. (ii) $p_1 = 3$ and $r_1 = 1$.

However, by (8), we can calculate that n < 10000, a contradiction. Thus, the theorem is proved.

3 Proof of Theorem 2

A computer search showed that (4) has only the solution n = 56 with $n \le 10000$ (see ^[1]). We now let n be a solution of (4) with $n \ne 56$. Then we have n > 10000. We see from (4) that

(9) $Z(n) \equiv -d(n) \pmod{n}$

It implies that.

(10)
$$Z(n) + 1 \equiv 1 - d(n) \pmod{n}$$

By the proof of Theorem 1, we have n |Z(n)(Z(n)+1)/2, by (2). It can be written as

(11)
$$Z(n)(Z(n)+1) \equiv 0 \pmod{n}.$$

Substituting (9) and (10) into (11), we get

(12)
$$d(n)(d(n)-1) \equiv 0 \pmod{n}.$$

Notice that d(n) > 1 if n > 1. We see from (12) that

(13)
$$(d(n))^2 > n$$

Let (5) be the factorization of n. By (5), (6) and (13), we obtain

(14)
$$1 > \prod_{i=1}^{k} \frac{p_i^{r_i}}{(r_i+1)^2}$$

On the other hand, it is a well known fact that $Z(p^r) \ge p^r - 1 > (r+1)^2$ for any prime power p^r with $p^r > 32$. We find from (14) that $k \ge 2$.

If $p_1 > 3$, then $p_i^{r_i}/(r_i+1)^2 \ge 5/4 > 1$ for $i = 1, 2, \dots k$, It implies that if (14) holds, then either $p_1 = 2$ or $p_1 = 3$. By the same method, then n must satisfy one of the following conditions:

(i) $p_1 = 2, p_2 = 3$ and $(r_1, r_2) = (1,1), (2,1), (3,1), (4,1), (5,1), (6,1), (1,2), (2,2), (3,2), (4,2)$ or (5,2).

(ii) $p_1=2, p_2>3$ and $r_1 \le 5$.

(iii) $p_1 = 3$ and $r_1 = 1$.

However, by (14), we can calculate that n < 10000, a contradiction. Thus, the theorem is proved.

References

- [1]C. Ashbacher, The pseudo Smarandache function and the classical functions of number theory, Smarandache Notions J.,9(1998), 78 – 81.
- [2]G.H.Hardy and E.M.Wright, An Introduction to the Theory of Numbers, Oxford, Oxford Univ. Press, 1937.

Department of Mathematics Maoming Educational College Maoming, Guangdong P.R.China