SOLUTION OF TWO QUESTIONS CONCERNING THE DIVISOR FUNCTION AND THE PSEUDOSMARANDACHE FUNCTION

Zhong Li

Abstract

In this paper we completely solve two questions concerning the divisor function and the pseudo-Smarandache function.

Key words divisor function, pseudo - Smarandache function, functional equation

1 Introduction

Let \mathbb{N} be the set of all positive integers. For any $n \in \mathbb{N}$, let

$$
\begin{equation*}
d(n)=\sum_{d \backslash n} 1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
Z(n)=\min \left\{a|a \in \mathbb{N}, n| \sum_{j=1}^{a} j\right\} \tag{2}
\end{equation*}
$$

Then $d(n)$ and $Z(n)$ are called the divisor function and the pseudo Smarandache function of n, respectively, $\operatorname{In}^{[1]}$, Ashbacher posed the following unsolved questions.

Question 1 How many solutions n are there to the functional equation.

$$
\begin{equation*}
Z(n)=d(n), n \in \mathbb{N} ? \tag{3}
\end{equation*}
$$

Question 2 How many solutions n are there to the functional equation.

$$
Z(n)+d(n)=n, n \in \Omega ?
$$

In this paper we completely solve the above questions as follows.
Theorem 1 The equation (3) has only the solutions $n=1,3$ and 10 .
Theorem 2 The equation (4) has only the solution $n=56$.

2 Proof of Theorem 1

A computer search showed that (3) has only the solutions $n=$ 1,3 and 10 with $n \leqslant 10000$ (see ${ }^{[1]}$) We now let n be a solution of (3) with $n \neq 1,3$ or 10 . Then we have $n>10000$. Let

$$
\begin{equation*}
n=p_{1}{ }_{1}^{r_{1}} p_{2} r_{2} \cdots p_{k}^{r_{k}} \tag{5}
\end{equation*}
$$

be the factorization of n. By [2, Theorem 273], we get from (1) and (5) that

$$
\begin{equation*}
d(n)=\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{k}+1\right) \tag{6}
\end{equation*}
$$

On the other hand, since $\sum_{j=1}^{a} j=a(a+1) / 2$ for any $a \in \mathbb{N}$, we see from (2) that $n \mid Z(n)(Z(n)+1) / 2$. It implies that $Z(n)(Z(n)$ $+1) / 2 \geqslant n$. So we have

$$
\begin{equation*}
Z(n) \geqslant \sqrt{2 n+\frac{1}{4}}-\frac{1}{2} \tag{7}
\end{equation*}
$$

Hence, by (3), (5), (6) and (7), we get

$$
\begin{equation*}
1>\sqrt{2} \prod_{i=1}^{\ell} \frac{p_{i}^{r_{i} / 2}}{r_{i}+1}-\frac{1}{2} \prod_{i=1}^{n} \frac{1}{r_{i}+1} \tag{8}
\end{equation*}
$$

If $p_{1}>3$, then from (8) we get $p_{1} \geqslant 5$ and

$$
1 \geqslant \sqrt{2}\left(\frac{\sqrt{5}}{2}\right)^{k}-\frac{1}{2^{k+1}}>1
$$

a contradiction. Therefore, if (8) holds, then either $p_{1}=2$ or $p_{1}=3$. By the same method, then n must satisfy one of the following conditions.
(i) $p_{1}=2$ and $r_{1} \leqslant 4$.
(ii) $p_{1}=3$ and $r_{1}=1$.

However, by (8), we can calculate that $n<10000$, a contradiction. Thus, the theorem is proved.

3 Proof of Theorem 2

A computer search showed that (4) has only the solution $n=56$ with n $\leqslant 10000$ (see ${ }^{[1]}$). We now let n be a solution of (4) with $n \neq 56$. Then we have $n>10000$. We see from (4) that

$$
\begin{equation*}
Z(n) \equiv-d(n)(\bmod n) \tag{9}
\end{equation*}
$$

It implies that.

$$
\begin{equation*}
Z(n)+1 \equiv 1-d(n)(\bmod n) \tag{10}
\end{equation*}
$$

By the proof of Theorem 1, we have $n \mid Z(n)(Z(n)+1) / 2$, by (2). It can be written as

$$
\begin{equation*}
Z(n)(Z(n)+1) \equiv 0(\bmod n) \tag{11}
\end{equation*}
$$

Substituting (9) and (10) into (11), we get

$$
\begin{equation*}
d(n)(d(n)-1) \equiv 0(\bmod n) . \tag{12}
\end{equation*}
$$

Notice that $d(n)>1$ if $n>1$. We see from (12) that

$$
\begin{equation*}
(d(n))^{2}>n \tag{13}
\end{equation*}
$$

Let (5) be the factorization of $n \cdot \operatorname{By}(5),(6)$ and (13), we obtain

$$
\begin{equation*}
1>\prod_{i=1}^{\prod_{1}} \frac{p_{i}^{r_{i}}}{\left(r_{i}+1\right)^{2}} \tag{14}
\end{equation*}
$$

On the other hand, it is a well known fact that $Z\left(p^{r}\right) \geqslant p^{r}-1>(r+1)^{2}$ for any prime power p^{r} with $p^{r}>32$. We find from (14) that $k \geqslant 2$.

If $p_{1}>3$, then $p_{i}^{r_{i}}\left(r_{i}+1\right)^{2} \geqslant 5 / 4>1$ for $i=1,2, \cdots k$, It implies that if (14) holds, then either $p_{1}=2$ or $p_{1}=3$. By the same method, then n must satisfy one of the following conditions:
(i) $p_{1}=2, p_{2}=3$ and $\left(r_{1}, r_{2}\right)=(1,1),(2,1),(3,1),(4,1),(5,1)$, $(6,1),(1,2),(2,2),(3,2),(4,2)$ or $(5,2)$.
(ii) $p_{1}=2, p_{2}>3$ and $r_{1} \leqslant 5$.
(iii) $p_{1}=3$ and $r_{1}=1$.

However, by (14), we can calculate that $n<10000$, a contradiction. Thus, the theorem is proved.

References

[1]C. Ashbacher, The pseudo - Smarandache function and the classical functions of number theory, Smarandache Notions J. ,9(1998), 78-81.
[2]G. H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford,Oxford Univ. Press, 1937.

Department of Mathematics
Maoming Educational College
Maoming, Guangdong
P.R.China

