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Abstract In this paper we completely solve two questions concerning 

the divisor function and the pseudo - Smarandache function. 
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1 Introduction 

Let N be the set of all positive integers . For any n E 1\1 ,let 

(1) d(n)=~l, 
din 

a 

(2) Z(n)=min{alaEN,nl~j! 
j=l 

Then d ( n ) and Z ( n ) are called the divisor function and the pseudo -

Smarandache function of n, respectively, In[l] ,Ashbacher posed the follow

ing unsolved questions. 

Question 1 How many solutions n are there to the functional equa-

tion. 

(3) Z(n)=d(n),nEN? 

Question 2 How many solutions n are there to the functional equa-

tion. 
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(4) Z ( n ) + d (n ) = 11 , n E : ;~? 

In this paper we completely solve the above questions as follows. 

Theorem 1 The equation (3) has only the solutions n = 1,3 and 10. 

Theorem 2 The equation (4) has only the solution n = 56. 

2 Proof of Theorem 1 

A computer search showed that (3) has only the solutions n = 
1,3 and 10 with n~10000(see [1]) 

We now let n be a solution of (3) with n =1= 1,3 or 10 . Then we 

have n > 10000. Let 

(5) n = Pl r
lp2 r2 ···Pkr

• 

be the factorization of n . By [2, Theorem 273] ,we get from (1) 

and (5) that 

(6) d(n)=(rl+1)(r2+1)···(rk+1). 
a 

On the other hand, since ~ j = a (a + 1) /2 for any a E·N, we see 
;=1 

from (2) that nIZ(n)(Z(n)+I)J2.It implies that Z(n)(Z(n) 

+ 1)J2~n. So we have 

(7) Z(nr~J2n+!-~ 
Hence, by (3), (5) , ( 6) and (7), we get 

(8) 

If P1>3,then from (8) we get Pl~5 and 

1~(1)k - 2k1+1 >1. 
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a contradiction. Therefore, if (8) holds, then either PI = 2 or PI = 3 . By 

the same method, then n must satisfy one of the following condi

tions. 

(i) PI = 2 and TI~4 . 

( ii ) PI = 3 and r 1 = 1 . 

However, by (8), we can calculate that n < 10000, a contradiction. 

Thus, the theorem is proved. 

3 Proof of Theorem 2 

A computer search showed that (4) has only the solution n = 56 with n 

~10000 (see (1]). We now let n be a solution of (4) with n#56. Then we 

have n >10000. We see from (4) that 

(9) Z(n)==-d(n) (mod n) 

It implies that. 

(10) zen) + 1==1- den) (mod n) 

By the proof of Theorem 1, we have n I Z ( n ) ( Z ( n ) + 1) 12, by (2). It can 

be written as 

(11) Z ( n ) ( Z ( n ) + 1) ==0 (mod n). 

Substituting (9) and (10) into (11), we get 

( 12) d ( n )( d ( n ) - 1) ==0 (mod n). 

Notice that d (n) > 1 if n > 1. We see from (12)that 

(13) (d(n»2>n 

Let (5) be the factorization of n . By (5), ( 6) and (13), we obtain 

(14) 
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On the other hand, it is a well known fact that Z (pr)?: pr -1> (r + 1)2 

for any prime power pT with pr>32. We find from (14) that k?:2. 

If PI >3, then p{i/( ri + 1 )2?:5/4 > 1 for i = 1,2, ... k , It implies that 

if (14) holds, then either PI = 2 or PI = 3 . By the same method, then n 

must satisfy one of the following conditions: 

(i) PI =2,P2=3 and (rI,r2)= (1,1),(2,1),(3,1),(4,1),(5,1), 

(6,1),(1,2),(2,2),(3,2),(4,2)or (5,2). 

(ii) PI =2,P2>3 and rl~5. 

(iii) PI = 3 and rl = 1. 

However, by (14), we can calculate that n < 10000, a contradiction. Thus, 

the theorem is proved. 
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