SOME CONJECTURES ON PRIMES (I)

Maohua Le

Abstract. For any complex number x, let $\exp(x)=e^x$. For any positive integer n, let p_n be the *n*th prime. In this paper we prove that $\exp(\sqrt{(n+1)/p_{n+1}})/\exp(\sqrt{p_n/n}) < \exp(\sqrt{3/5})/\exp(\sqrt{3/2})$.

Key words: prime, inequality.

For any complex number x, let $exp(x)=e^x$. For any positive integer n, let p_n be the *n*th prime. Recently, Russo [2] proposed the following conjecture:

Conjecture For any positive integer n,

(1)	$\frac{\exp\left(\sqrt{\frac{n+1}{p_{n+1}}}\right)}{2} \leq \frac{1}{2}$	$exp\left(\sqrt{\frac{3}{5}}\right)$
	$\exp\!\!\left(\sqrt{\frac{p_n}{n}}\right)$	$\exp\left(\sqrt{\frac{3}{2}}\right)$

In [2], Russo verified (1) for $p_n \leq 10^7$. In this paper we completely solve the above-mentioned conjecture as follows.

Theorem For any positive integer n, the inequality (1) holds.

Proof We may assume that $p_n > 10^7$. Then we have n > 1000. It is a well known fact that

(2) $p_n > n \log n$,

for any positive integer n (see [1]). By (2), we get

(3)
$$\exp\left(\sqrt{\frac{p_n}{n}}\right) > \exp\left(\sqrt{\log n}\right) > \exp\left(\sqrt{\log 1000}\right) > \exp(2.6).$$

On the other hand, since $p_{n+1} > n+1$, we get

(4)
$$\exp\left(\sqrt{\frac{3}{2}} - \sqrt{\frac{3}{5}} + \sqrt{\frac{n+1}{p_{n+1}}}\right) < \exp\left(\sqrt{\frac{3}{2}} - \sqrt{\frac{3}{5}} + 1\right) < \exp(1.5).$$

The combination of (3) and (4) yields

(5)
$$\exp\left(\sqrt{\frac{p_n}{n}}\right) > \exp\left(\sqrt{\frac{3}{2}} - \sqrt{\frac{3}{5}} + \sqrt{\frac{n+1}{p_{n+1}}}\right).$$

Thus, by (5), we get (1) immediately. The theorem is proved.

References

- B. Rosser, The nth prime is greater than nlogn, Proc. London Math. Soc. (2) 45(1938), 21-44.
- [2] F. Russo, Ten conjectures on prime numbers, Smarandache Notions J. 12(2001), 295-296.

Department of Mathematics Zhanjiang Normal College Zhanjiang, Guangdong P. R. CHINA