SOME CONJECTURES ON PRIMES (II)

Maohua Le

Abstract. For any positive integer n, let p_{n} be the nth prime. In this paper we give a counter-example for the inequality $\operatorname{cxp}\left(\sqrt{(n+1) / p_{n+1}}\right) / \exp \left(\sqrt{p_{n} / n}\right)<\exp (\sqrt{3 / 5}) / \exp (\sqrt{3 / 2})$.

Key words: prime, inequality

For any positive integer n, let p_{n} be the nth prime. Recently, Russo [3] proposed the following conjecture:

Conjecture For any positive integer n,

$$
\begin{equation*}
\left|p_{n} \cdot(n+1)-n \cdot p_{n+1}\right|<\frac{1}{2}(n+1)^{9 / 50} \tag{1}
\end{equation*}
$$

In [3], Russo verified the equality (1) holds for $p_{n} \leqslant 10^{7}$. However, we shall show that (1) is false for some n.

Let p_{n} and p_{n+1} be twin primes. Then we have

$$
\begin{equation*}
p_{n+1}=p_{n}+2 . \tag{2}
\end{equation*}
$$

If (1) holds, then from (2) we get

$$
\begin{equation*}
\left|p_{n}-2 n\right|<\frac{1}{2}(n+1)^{9 / 50} \tag{3}
\end{equation*}
$$

It is a well known fact that

$$
\begin{equation*}
p_{n}>n \log n \tag{4}
\end{equation*}
$$

for any positive integer n (see [2]). Therefore, by (3) and (4), we obtain

$$
\begin{equation*}
n(\log n-2)<\frac{1}{2}(n+1)^{9 / 50}, n>6 \tag{5}
\end{equation*}
$$

By [1], $p_{n}=297.2^{546}-1$ and $p_{n}+1=297.2^{546}+1$ are twin primes. Then we have $n>10^{10}$. Therefore, (5) is impossible. Thus, the inequality (1) is false for some n.

References

[1] R. Baillie, New primes of the form $k \cdot 2^{n}+1$, Math. Comp. 33(1979), 1333-1336.
[2] B. Rosser, The nth prime is greater than $n \log n$, Proc. London Math. Soc. (2) 45(1938), 21-44.
[3] F. Russo, Ten conjectures on prime numbers, Smarandache Notions J. 12(2001), 295-296.

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P. R. CHINA

