SOME CONJECTURES ON PRIMES (III)

Maohua Le

Abstract. For any positive integer n, let p_{n} be the nth prime. In this paper we prove that the equality

$$
\left(\sqrt{p_{n}}-\log p_{n+1}\right) /\left(\sqrt{p_{n+1}}-\log p_{n}\right) \geq(\sqrt{3}-\log 5) /(\sqrt{5}-\log 3) \text { for any } \mathrm{n} \text {. }
$$

Key words: prime, inequality.

For any positive integer n, let p_{n} be the nth prime. Recently, Russo [2] proposed the following conjecture:

Conjecture For any positive integer n,

$$
\begin{equation*}
\frac{\sqrt{p_{n}}-\log p_{n+1}}{\sqrt{p_{n+1}}-\log p_{n}} \geq \frac{\sqrt{3}-\log 5}{\sqrt{5}-\log 3} . \tag{1}
\end{equation*}
$$

In [2], Russo verified the equality (1) holds for $p_{n} \leqslant 10^{7}$. In this paper, we completely solve the above-mentioned problem as follows.

Theorem For any positive integer n, the equality (1) holds.
Proof We may assume that $p_{n}>10^{7}$. Since

$$
\begin{equation*}
\frac{\sqrt{3}-\log 5}{\sqrt{5}-\log 3}<0.11 \tag{2}
\end{equation*}
$$

if (1) is false, then from (2) we get

$$
\begin{equation*}
\sqrt{p_{n}}<\log p_{n+1}+0.11 \sqrt{p_{n+1}} . \tag{3}
\end{equation*}
$$

It is a well known fact that
(4)

$$
p_{n+1}<2 p_{n}
$$

for any positive integer n (see [1, Theorem 245]). Substitute (4) into (3), we obtain

$$
\begin{equation*}
0.84 \sqrt{p_{n}}<\log \left(2 p_{n}\right) . \tag{5}
\end{equation*}
$$

However, (5) is impossible for $p_{n}>10^{7}$. Thus, the theorem is proved.

References

[1] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford Univ. Press, Oxford, 1938.
[2] F. Russo, Ten conjectures on prime numbers, Smarandache Notions J. 12(2001), 295-296.

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P. R. CHINA

