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I. INTRODUCTION 

The Smarandache function S:N* ~N* is defined [9] by the condition that S(n) 
is the smallest positive integer k such that k! is divisible by n. 

If 

(1) 

is the decomposition of the positive integer n into primes, then it is easy to verify that 

S(n) = max (s(p,ai 
)) (2) 

One of the most important properties of this function is that a positive integer p is 
a fixed point of S if and only if p is a prime or p = 4. 

This paper is aimed to provide generalizations of the Smarandache function. They 
will be constructed by means of sequences more general than the sequence of the 
factorials. Such sequences are monotonously convergent to zero sequences and divisibility 
sequences (in particular the Fibonacci sequence). 

Our main result states that the Smarandache generalized function associated with 
every strong divisibility sequence (sequence satisfying the condition ( 15) from bellow) is a 
dual strong divisibility sequence (i.e. it satisfies the condition (26), the dual of (15)). 

Note that the Smarandache function S is not monotonous. Indeed, n 1 ~ n2 does 

not imply S(nJ ~ S(n2)' For instance 5 ~ 12 and S(5) = 5, S(12) = 4. 
d 

Let us denote by v the least common multiple, by /\ the greatest common divisor 
d 

and let /\ = min, v = max. It is known that 

No = (N·,/\,v) and Nd =(N·,~,~) 
are lattices. The order on N* corresponding to the lattice No is the usual order: 

n] ~ 112 <=> 11] /\n 2 = n] 

and it is a total order. On the contrary, the order ~ corresponding to the lattice N d , 
d 

defined as 

n] ~112 <=> 11] /\112 = 11] 
d d 

( the divisibility relation) is only a partial order. 
More precisely we have 
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n l <;.n2 <=> n l divides n 2 • 
d ' 

For n l <;.n2 we shall also write n 2 "?nl . We notice that Nd has zero as the greatest 
d d 

element, No does not possess a greatest element and both lattices have 1 as the smallest 

element. Then it is convenient to consider in No the convergence to infinity and in N d , 

the convergence to zero. 
Let 

n l = TIPiCl
, and 112 = TIpf' 

be the decompositions into primes of III and n2 • Then we have 
d 

n vn = TIp In3X (Cli.Pi) 
I 2 I . 

The definition of the Smarandache function implies that 

s(nl ~n2) = S(nl)v S(112) 
Also we have 
n l <;.112 => S(nJ::; S(n2)' 

d 

(3) 

(4) 

In order to make explicit the lattice (so, the order) on the set N·, we shall write 

No instead of N·, if the order on the set of the positive integers is the usual order and 

Nd instead of N· , if we consider the order <;. respectively. 
d 

Then (4) shows that the Smarandache function, considered as a function 
S : Nd ~ No, (5) 

is an order preserving map. 
From (2) it follows that the detennination of S(n) reduces to the computation of 

s(pa ). In addition, it is proved [1] that if the sequence 

(P): 1, p, p2, ... , pi, ... (6) 

is the standard p - scale and the sequence 

(p): al(P), a2(p~ .. " ai(P), ... 
is the generalized numerical scale determined by the sequence 

then 

a , (P)= p' -1 
p-1 

s(pa)= p(a[plt) (7) 

In other words, s(pa) can be obtained by multiplying by p the number obtained 

writing the exponent a in the generalized scale (P) and "reading" it in the scale (P). 
For instance, in order to calculate S(3 99

) let us consider the scale 

[3] 1,4, 13,40, 121, ... 
Then, for a = 99 , we have 
a[3] = 2a4(3)+a3(3)+a2(3)+2aJ3) = 2112[3] 
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and "reading" this number in the usual scale 
(3) 1, 3, 32

, 33
, ... 

we get S(3 99
) = 3(2.3 3 + 32 .+ 3 + 2 )=204. So, 204 is the smallest positive integer whose 

factorial is divisible by 399
. 

We quote also the following formula used to compute s(pa): 
s(pa)= (p -1)a + a[p] (a) , (8) 

where a[p] (a ) stands for the sum of the digits of the integer a written in the scale [p]. 

2. GENERALIZED SMARANDACHE FUNCTIONS 

A sequence of positive integers is a mapping a : N* ~ N* and it is usualy denoted 
by (a JnEN· (i.e. the set of its values). Since in the sequel an essential point is to 

make evident the structure (the lattice) on the domain and on the range of this function 
respectively, we adopt the notation from (5). 

Then 
(9) 

shows that a is a sequence of positive integers defined on the set N*. This set was 
structured as a lattice by 1\ and v and its range has also a structure of lattice, induced by 

d 

1\ and v. 
d 

Definition 2.1. [3] The sequence (9) is a multiplicatively convergent to zero 
sequence (mcz) if 

(V)nEN* (3) mn EN' (V)m~mn =>n5a (m). (10) 
d 

In other words, a (mcz) sequence IS a sequence defined as In (9), which IS 

convergent to zero. 
These sequences, satisfying in addition the condition 
a(n).sa(n+l) (11) 

d 

(that is a(n)divides o-(n+l)) were considered by G. Christol [3] in order to obtain a 

generalization of p - adic numbers. 

As an example of a (mcz) sequence we may consider the sequence defined by 

a(n) = n! . This sequence also satisfies the condition (11). 

Remark 2.1. We find that the value Sen) oftbe Smarandache function at the point 

n is the smallest integer m n provided by (10), whenever a (n) = n!. This enables us to 

define a Smarandache type function for each (mcz) sequence. Indeed, for an arbitrary 

(mcz) sequence 0- , we may define S".{n) as the smallest integer m n given by (10). 

The (mcz) sequences satisfying the extra-condition (11) generalize thc factorial. 

Indeed, if 
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then 
cy(n) = kl ·k2 • ••• ·kn , with kl = 1 and k; E N* for i> l. 

Starting with the lattices No and N d, we can construct sequences 

CY: Nd ~Nd . 

Definition 2.2. A sequence (13) is called a divisibility sequence (cis) if 

(12) 

(13) 

n5m ~ cy(n h;,cy(m) (14) 
d d 

(that is if the mapping CY from (13) ia monotonous). The sequence (13) is called a strong 
divisibilit;; seqUfnce (sds) if 

CY~ -;jm)= cy(n )-;jcy(m) for every n, mE N* . (15) 

Strong divisibility sequences are considered, for instance, by N. Jensen in [5]. 
It is known that the Fibonacci sequence is also (scis) . 
For a sequence CY of positive integers, concepts as (usual) monotonicity, 

multiplicatively convergence to zero, divisibility, have been independently studied by many 
authors. A unifying treatement of these concepts can be achieved if we remark that they 
are monotonicity or convergence conditions of a given sequence CY: N* ~ N*, for 

adequate lattices on N'. 
We shall consider now all the possibilities to define a sequence of positive integers, 

with respect to the lattices No and N d . To make briefly evident thc kind of the lattice 

considered on the domain and on the range of a , we shall use the following notation: 
(a) a sequence CY 00 : No ~ No is an (00)- sequence 

(b) a sequence CYod : No ~ Nd is an (od)- sequence 

(c) a sequence CY do : Nd ~ No is an (do )-sequence 

(d) asequenceCYdd :Nd ~Nd isa(dd)-sequence 

We have already seen (Remark 2.1) that, considering (mcz) sequences, the 

Smarandache function may be generalized. 
In order to generalize tbe Smarandache function for each type of the above 

sequences, it is necessary to consider the monotonicity and the existence of a limit 
corresponding to each of the cases (a) - (d). 

Of course, the limit is infinit for No -valued sequence and it is zero for the others. 

We have four kinds of mono tonicity. 
For a (do) - squence CY do' the monotonicity reads: 

(mdJ ('i)nl>n: EN', nl ~n: ~CYdo(nl)~CYdo(n2) 

and the condition of convergence to infinity is: 

(cdJ (V)nEN' (:J)mn EN' (V)m~mn ~CYdo(m)~n. 
d 

Similarly, for a (dd)- sequence CY dd, the monotonicity reads: 
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(m dd ) (V)npn2 EN-, nl '5.n2 ~CTdd(nJ'5.CTdd(n~) 
d d ~ 

and the convergence to zero· is: 

(cdd ) (V)nEN- (:J)mn EN- (V)m~mn ~CTdd(mhn. 
d d 

Definition 2.3. The peneralized Smarandache function associated to a sequence 
CT if satisfying tbe condition tc if)' with i, j E ~, d}, is 

S,j(n)= min {m n Imn given by the condition (cij)} (16) 

Remark that (00) - sequences are the classical sequences of positive integers. As 

examples of (od)- sequences we quote the (mcz) sequences. Examples of 

(dd) - sequences are (tis) and (stis) - sequences. Finally, the generalized Smarandache 

functions Sod associated with (od)- sequences satisfying the condition (Cod) are 

(do) - sequences. 

The functions S'j have the following properties: 

Theorem 2.1. Every function Soo satisfies: 

(i) (V)npn2 EN", nl 5on2 =>Soo(nJ50Soo (n2)' 

that is Soo satisfies (moJ. 

(ii) Soo(nl vn2 )=Soo(nl)vS
OO

(n2) 

(iii) SoO(nl /\n 2 )=Soo(nl)/\SOO(n2). 

Proof: (i) The definition of S 00 (n) implies that: 

Soo (nJ = min {m
ni 

[(VIn ~ m
ni 

=> CT 00 (m) ~ nJ, for i = 1,2 

Therefore 

(V)m~Soo(nJ=>CToo(m)~n2 ~nl 
and so S 00 (nJ 50 S 00 (n2). The equalities (ii) and (iii) are consequences of (i). 

Theorem 2.2. Every function Sod has the following properties: 

(iv) (V) n l , n: EN-, nl ~n: => Sod (nJ 50 Sod (n 2 ) 

that is SOd satisfies (mOd). 

(v) Sod n l vn2 '=SoAnJvSoAn:). 
( 

d I 

(vi) S'" kinJ S'" (n,)A S",(n,) 
Proof: The equality (v) may be proved in the same manner as the equality (3) for 

the function S. Then from (v) it follows (iv). 

For (Vi) let us note u = SoAnl)/\SOd(nJ. From 

nl /\n~ '5.nl, nl /\n, '5.n, d ~d d ~d ~ 
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and from (iv), it f~llows that 

Sod 01 ,;n2)5: Sod(n11 Sod 01 ,;nJ5: Sod (nJ, 

so SOd 01 ,;n2)5: Sod (nJ" Sod (n2)' 

Theorem 2.3. The functions Sdo satisfy: 

(vii) (V)n1>n2 EN", n1 5:n2 ::::>Sdo(nJ5:Sdo (n2). 
d 

(viii) SdO(n1 vn2 )5: Sdo(n1)vSdo (n2). 

(ix) Sd)n j vn2)=Sdo(nj)vSdo (n2). 

(x) SdO(n j "n2)= Sdo(n j)"Sd)n2). 
Proof: Let us note that (ix) and (x) are consequences of (vii). In our tenns (vii) 

is just the fact that the Smarandache generalized function S do associated with a 

(do)- sequence is (00)- monotonous. To prove this assertion, let nj 5: n2. Then for 

every m > m , we have d n, 
CJ do (m) ~ 112 ~ nj 

and so Sd)l1 j) 5: Sdo(nJ. 

(viii) For i = (, 2 we have: 

Sd)nJ= min \mni I(V)m~mn, ::::> CJdO(m)~ ni } 

Let us suppose that nj 5: 112 , so nj v n2 = n2 and Sdo(n j vnJ = Sdo(nJ. If we take 
d 

ma = S dJl1j )v S dJn2 ) , then for every m ~ ma it follows that CJ do (m) ~ ni , for i = 1, 2, so 

CJ do (m) ~ nj v 11 , whence the desired inequality. 

Consequence 2.1. Sd)I1J,;SdJn2) 5: Sdo(nJ"Sdo(n2 )= SdJnj "nJ5: 

d 

Sdo (l1j)V Sdo (n 2) = SdO(n j v n2 ) 5: Sdo (nj)v Sdo (n2)' 

Theorem 2.4. The functions S dd satisfy: 

( 
did 

(xi) Sdd lljV112j5:Sdd(nj)VSdAI1J. 

(xii) If 111 ~n2 or n2 ~l1j then 

S dd (l1j ~ n2 ) = S dd (nj)v S dd (n2)' 

(xiii) Sdd ~lj ,;nJ5: SdAnj)/\ Sdd (nJ. 

Proof: The proof of (xi) is similar to the proof of (viii) and the other assertions 

may be easily obtained by using the definition of Sdd from (17) (for i = j = d). 

Consequence 2.2. For all n j , n2 EN" we have 
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Sdd(nJv SdAn2)~ ~dd(nl ~n2) ~ Sdd(nJ~Sdd(nJ. 
This follows from the fact that 

ni ~nl ~n2 for i = 1, 2 => SdAnJ ~ Sdd( n l ~n2 ). 

If addis a divisibility sequence, the above theorem implies that the associated 

Smarandache function satisfies the inequality (xi). In the following we shall see that, if the 

sequence addis a divisibility sequence with additional properties, namely if it is a strong 

divisibility sequence, then the inequality (xi) becomes equality. 

Theorem 2.5: If add is a (sds) satisfying the condition (cdd 1 then: 

Sdd( nl ~n2) = SdAnJ~SdAn2) (17) 

and 

(V)nl> n2 EN", n l ~n2 => Sdd(nJ~SdAnJ (18) 

(i.e. Sdd satisfies the mono tonicity condition (mdd)). 
Proof: In order to prove the equality (17), it is sufficient to show that 

sdAn,)~Sdd( n l ~n2), for i = 1,2. 

But if, for instance, the above inequality does not hold for n l and we denote 

do = SdAnJ;;Sdd ( nl ~n2), 
it follows that do < SdAnJ and taking into account that 

a dASdAnJ)~nl and n l ~nl ~n2 ~a dd( Sdd(nl ~n2 )), 

we have 

a dd(do) = a d{ sdAnJ'iSdd(nl ~n2)) = 

= a dASdAnl))'ia dd( Sdd( nl ~n2) )~nl 'i nl = nl · 

Thus, we obtain the contradiction 

Sdd(nl)~do <SdAnl)· 
So, if the sequence add is a (sds) , that is if the equality (15) holds, then the 

corresponding Smarandache function Sdd satisfies the dual equality (17). 

Example. The Fibonacci sequence (FJ"EN' is a (sds-). Therefore, the generalized 

Smarandache function SF associated with this sequence satisfy: 
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SF(nJ ~n2) = SF{n)~SF{n2) (19) 

By means of this equality, the computation of SF (n) reduces to the determination 

of SF (p a), where p it a prime number. For instanJe 

SF (52) = min mnl{V)m~mn =>52~F{m) = 
d d 

= SF (22 )~SF(13)= 6~7 = 42. 

So, 42 is the smallest positive integer m such that F{m) is divisible by 52. 

Also, we have 

sA12) = SF (22 .3)= SF (22 )~SA3)= 6~4 = 12, 

therefore n = 12 is a fixed point of SF . 
(20) 

The values of SF(pa) may be obtained by writing all Fn in the scale (P) given by 

(6), which is a difficult operation. At the time being, we are not able to provide a closed 

formula for the computation of SF (pa ). However, we shall present some partial results in 

this direction. In [8] it is stated that 
3k <F <=> 4· 3k

-
J <n 

- n -
d d 

2k ~Fn <=> 3· 2k- 2 ~n, jar k ~ 3. 
d d 

It is known (see for instance [6], [7]) that if u is a non-degenerate second-order 
linear recurrence sequence defined by 

u{n)=Au(n-1)-Bo-(n-2) (21) 
where A and B are fixed non-zero coprime integers and 0-(1) = 1, 0-(2) = A, then 

nEZ·, nI\B=1=>(3)mEN· n~o-{m). (22) 
d d 

The least index of these terms is called the rank of appearance of n in the sequence 
and is denoted by r(n). 

If D = A2 - 4B and (Din) stands for the Jacobi symbol, then for mn I\BD = 1 and 
d 

p a prime we have ([6]) 
n~o-(m)<=> r(nhm; r(Php-(DI p) 

d d d 

p-(DI p) ( d ) d (23) 
r(p);j 2 <=>(Blp)=l; r mvn =r(m)vr(n). 

Let us denote N; = {n E N"I n r;;B = I}. Obviously, if r is considered as a function 

r : N; ~ N" , then te can write:} 
r(n)= min mln~o-(m). 

d 

Whence an evident parallel between the above methods described for the construction of 
the generalized Smarandache functions and the definition of the function r. 

F or the Fibonacci sequence (Fn) we have A = I, B = -1 and so D = 5. 

This implies 
p = 5k ± 1 => (5 I p) = 1 (24) 
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p = 5k ± 2 => (5 I p) = -1 (25) 
and it follows that if (24) holds, then p divides Fp _1 • Thus SF (P) is a divisor of p - 1. In 

the second case p divides Fp+I and SF (P) is a divisor of p + 1. 

From (23) we deduce 
SF (P ) ~ p - (5 I p) 

for any prime number p. 
Lemma 2 from [6] implies that the fraction (p - (5/ P ))1 SF (P) is unbounded. We 

also have 
pic '5 Fn 

<=> S Aplc )91 . 
d d 

Example. For p = 11 it follows (SIp) = I, so SF(llh:1o. In fact, we have precisely 
d 

SF (11) = 11- (5111) = 10, but there exist prime numbers such that SF (P) < p - (51 p). For 

instance, p =17, for which p - (SIp) = 18 and SF (17) = 9 . 

Definition 2.4. The sequence 0' is a dual strong divisibility sequence (dsds) if 

0'( n ~ m ) = O'(n)~ O'(m) for all n, mEN· . (26) 

It may be easily seen that every strong divisibility sequence IS a divisibility 
sequence. We also have: 

d 

Proposition 2.1 Every dual strong divisibility sequence is a divisibility sequence. 
Proof. We have to prove that (26) implies (14). But if n'5m, it follows 

d 

nvm = m and then 

O'(m)=O'(n~m )=O'(n)~O'(m) (27) 

so,O'(n)'5O'(m). 
d 

Then Theorem 2.5 asserts that the Smarandache generalized function Sa 

associated with any strong divisibility sequence 0' is a dual strong divisibility sequence. Of 
course, in this case, both sequences 0' and Sa are divisibility sequences. 

It would be very interesting to prove whether the converse assertion holds. That is 
if Sdd is the generalized Smarandache function associated with a ( divisibility) sequence 

0' dd satisfying the condition (c dd)' then the equality (17) implies the strong divisibility. 

Remarks. (1) It is known that the Smarandache function S is onto. But given a 
(dd)- sequence 0' dd' even if it is a (sds) , it does not follow that the associated function 

Sdd is onto. Indeed, the function SF associated with the Fibonacci sequence is not onto, 

because n = 2 is not a value of SF . 
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(2) One of the most interesting diophantine equations associated with a 
Smarandache type function is that which provides its fixed points. We remember that the 
fixed points for the Smarandarche function are all the primes and the composit number 
n = 4. For the functions Sdd the equation providing the fixed points reads Sdd (x) = x and 

for SF we have as solutions, for instance, n = 5, n =12. 

At the end of this paper we quote the following question on the Smarandache 
function, also related to the Fibonacci sequence: 

T. Yau [10] wondered if there exist triplets of positive integers (n, n-l, n-2) such 
that the corresponding values of the Smarandache function satisfy the Fibonacci 
recurrence relation Sen) = sen - 1) + sen - 2). 

He found two such triplets, namely for n =11 and for n =121. Indeed, we have 
S(9) + S(lO) = Sell) and S(1l9) + S(l20) = S(l21). 
Using a computer, Charles Ashbacher [2] found additional values. These are for 
n = 4902, n = 26245, n = 32112, n = 64010, n = 368139, n = 415664. 
Recently H. Ibsent [4] proposed an algorithm permitting to find, by means of a 

computer, much more values. But the question posed by T. Yau "How many other 
triplets with the same property exist?"is still unsolved. 
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