SOME ELEMENTARY ALGEBRAIC CONSDERATIONS INSPIRED BY SMARANDACHE'S FUNCTION (II)

E. RĂDESCU, N. RĂDESCU AND C. DUMITRESCU

In this paper we continue the algebraic consideration begun in [2]. As it was sun, two of the proprieties of Smarandache's function are hold:
(1) S is a surjective function;
(2) $S([m, n])=\max \{S(m), S(n)\}$, where $[m, n]$ is the smallest common multiple of m and n.

That is on \aleph there are considered both of the divisibility order " \preceq_{d} " having the known properties and the total order with the usual order \leq with all its properties. \aleph has also the algebric usual operations " + " and $" . "$. For instance:

$$
a \leq b \Longleftrightarrow(\exists) u \in \mathcal{N} \text { so that } b=a+u
$$

Here we can stand out:
: the universal algebra (\aleph^{*}, Ω), the set of operations is $\Omega=\left\{V_{d}, \varphi_{0}\right\}$ where $\vee_{d}:\left(\aleph^{*}\right)^{2} \rightarrow \aleph^{*}$ is given by $m \vee_{d} n=[m, n]$, and $\varphi_{0}:\left(\aleph^{*}\right)^{0} \rightarrow \aleph^{*}$ the null operation that fixes 1 -unique particular element with the role of neutral element for $" \vee_{d} "$-that means $\varphi_{0}(\{\emptyset\})=1$ and $1=e_{V_{d}}$;
: the universal algebra ($\aleph^{*}, \Omega^{\prime}$), the set of operations is $\Omega^{\prime}=\left\{V, \psi_{0}\right\}$ where $\vee: \aleph^{2} \rightarrow \aleph$ is given by $x \vee y=\sup \{x, y\}$ and $\psi_{0}: \aleph^{0} \rightarrow \aleph$ a null operation with $\psi_{0}(\{\emptyset\})=0$ the unique particular element with the role of neutral element for V, so $0=e_{V}$.
We observe that the universal algebras (\aleph^{*}, Ω) and ($\aleph^{*}, \Omega^{\prime}$) are of the same type:

$$
\left(\begin{array}{ll}
\vee_{d} & \varphi_{0} \\
2 & 0
\end{array}\right)=\left(\begin{array}{ll}
\vee & \psi_{0} \\
2 & 0
\end{array}\right)
$$

and with the similarity (bijective) $\vee_{d} \Longleftrightarrow \vee$ and $\varphi_{0} \Longleftrightarrow \psi_{0}$, Smarandache's function $S: \aleph^{*} \rightarrow \aleph$ is a morphism surjective between them

$$
\begin{aligned}
S\left(x \vee_{d} y\right) & =S(x) \vee S(y), \forall x, y \in \mathbb{N}^{*} \text { from (2) and } \\
S\left(\varphi_{0}(\{\emptyset\})\right) & =\psi_{0}(\{\emptyset\}) \Longleftrightarrow S(1)=0 .
\end{aligned}
$$

E. RÅDESCU, N. RÅDESCU AND C. DUMITRESCU

Problem 3. If $S: \aleph^{*} \rightarrow \aleph$ is Smarandache's function defined as we know by

$$
S(n)=m \Longleftrightarrow m=\min \{k: n \text { divides } k!\}
$$

and I is a some set, then there exists an unique $s:\left(\aleph^{*}\right)^{I} \rightarrow \aleph^{I}$ a surjective morphisme between the universal algebras $\left(\left(\aleph^{*}\right)^{I}, \Omega\right)$ and $\left(\Omega^{I}, \Omega^{\prime}\right)$ so that $p_{i} \circ s=S \circ \tilde{p}_{i}$, for $i \in I$, where $p_{j}: \aleph^{I} \rightarrow \mathcal{N}$ defined by $a=\left\{a_{i}\right\}_{i \in I} \in \mathcal{N}^{I}, p_{j}(a)=a_{j}$, for each $j \in I$, p_{j} are the canonical projections, morphismes between $\left(\aleph^{I}, \Omega^{\prime}\right)$ and (\aleph, Ω^{\prime})-universal algebras of the same kind and $\tilde{p}_{j}:\left(\aleph^{*}\right)^{I} \rightarrow \aleph^{*}$ analogously between $\left.\left(\aleph^{*}\right)^{I}, \Omega\right)$ and $\left(\aleph^{*}, \Omega\right)$. We shall go over the following three steps in order to justify the assumption:

Theorem 0.1. Let by (\aleph, Ω) is an universal algebra more complexe with

$$
\Omega=\left\{\vee_{d}, \wedge_{d}, \varphi_{0}, \bar{\varphi}_{0}\right\}
$$

of the kind $\tau: \Omega \rightarrow \aleph$ given by

$$
\tau=\left(\begin{array}{cccc}
\vee_{d} & \wedge_{d} & \varphi_{0} & \bar{\varphi}_{0} \\
2 & 2 & 0 & 0
\end{array}\right)
$$

where \vee_{d} and φ_{0} are defined as above and $\wedge_{d}: \aleph^{2} \rightarrow \aleph$, for each $x, y \in \aleph, x \wedge_{d} y=$ (x, y) where (x, y) is the biggest common divisor of x and y and $\bar{\varphi}_{0}: \aleph^{0} \rightarrow \aleph$ is the null operation that fixes $0-a n$ unique particular element having the role of the neutral element for $" \wedge_{d} "$ i.e. $\bar{\varphi}_{0}(\{\emptyset\})=0$ so $0=e_{\wedge_{d}}$ and I a set. Then $\left(\aleph^{\prime}, \bar{\Omega}\right)$ with $\tilde{\Omega}=\left\{\omega_{1}, \omega_{2}, \omega_{0}, \bar{\omega}_{0}\right\}$ becomes an universal algebra of the same kind as (\aleph, Ω) and the canonical projections become surjective morphismes between $\left(\aleph^{I}, \tilde{\Omega}\right)$ and (\aleph, Ω), an universal algebra that satisfies the following property of universality:
(\mathcal{U}) : for every $(A, \bar{\Omega})$ with $\bar{\Omega}=\left\{T, \perp, \sigma_{0}, \bar{\sigma}_{0}\right\}$ an universal algebra of the same kind

$$
\tau=\left(\begin{array}{cccc}
\top & \perp & \sigma_{0} & \bar{\sigma}_{0} \\
2 & 2 & 0 & 0
\end{array}\right)
$$

and $u_{i}: A \rightarrow \aleph$, for each $i \in I$, morphismes between $(A, \bar{\Omega})$ and (\aleph, Ω), exists an unique $u: A \rightarrow \mathbb{N}^{I}$ morphism between the universal algebras $(A, \bar{\Omega})$ and $\left(\aleph^{I}, \tilde{\Omega}\right)$ so that $p_{j} \circ u=u_{j}$, for each $j \in I$, where $p_{j}: \aleph^{I} \rightarrow \aleph$ with each $a=\left\{a_{i}\right\}_{i \in I} \in$ $\aleph^{I}, p_{j}(a)=a_{j}$, for each $j \in I$ are the canonical projections morphismes between $\left(\aleph^{I}, \tilde{\Omega}\right)$ and (\aleph, Ω).

SMARANDACHE'S FUNCTION

Proof. Indeed $\left(\aleph^{I}, \tilde{\Omega}\right)$ with $\tilde{\Omega}=\left\{\omega_{1}, \omega_{2}, \omega_{0}, \bar{\omega}_{0}\right\}$ becomes an universal algebra because we can well define:
$\omega_{1}:\left(\aleph^{I}\right)^{2} \rightarrow \aleph^{I}$ by each $a=\left\{a_{i}\right\}_{i \in I}, b=\left\{b_{i}\right\}_{i \in I} \in \aleph ; \omega_{1}(a, b)=\left\{a_{i} \vee_{d} b_{i}\right\}_{i \in I} \in \aleph^{I}$ and
$\omega_{2}:\left(\aleph^{I}\right)^{2} \rightarrow \aleph^{I}$ by $\omega_{2}(a, b)=\left\{a_{i} \wedge_{d} b_{i}\right\}_{i \in I} \aleph^{I}$
and also
$\omega_{0}:\left(\aleph^{I}\right)^{0} \rightarrow \aleph^{I}$ with $\omega_{0}(\{\emptyset\})=\left\{e_{i}=1\right\}_{i \in I} \in \aleph^{I}$
an unique particular element (the family with all the components equal with 1) fixed by ω_{0} and having the role of neutral for the operation ω_{1} noted with $e_{\omega_{1}}$ and then $\bar{\omega}_{0}:\left(\aleph^{I}\right)^{0} \rightarrow \aleph^{I}$ with $\bar{\omega}_{0}(\{\emptyset\})=\left\{\bar{e}_{i}=0\right\}_{i \in I}$ an unique particular element fixed by $\bar{\omega}_{0}$ but hawing the role of neutral for the operation ω_{2} noted $\bar{e}_{\omega_{2}}$ (the verifies are imediate).

The canonical projections $p_{j}: \aleph^{I} \rightarrow \aleph$, defined as above, become morphismes between $\left(\aleph^{I}, \tilde{\Omega}\right)$ and (\aleph, Ω). Indeed the two universal algebras are of the same kind

$$
\left(\begin{array}{cccc}
\omega_{1} & \omega_{2} & \omega_{0} & \bar{\omega}_{0} \\
2 & 2 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
\vee_{d} & \wedge_{d} & \varphi_{0} & \bar{\varphi}_{0} \\
2 & 2 & 0 & 0
\end{array}\right)
$$

and with the similairity (bijective) $\omega_{1} \Longleftrightarrow \vee_{d} ; \omega_{2} \Longleftrightarrow \wedge_{d} ; \omega_{0} \Longleftrightarrow \varphi_{0} ; \bar{\omega}_{0} \Longleftrightarrow \bar{\varphi}_{0}$ we observe first that for each $a, b \in \aleph^{I}, p_{j}\left(\omega_{1}(a, b)\right)=p_{j}(a) \vee_{d} p_{j}(b)$, for each $j \in I$ because $a=\left\{a_{i}\right\}_{i \in I}, b=\left\{b_{i}\right\}_{i \in I}, p_{j}\left(\omega_{1}(a, b)\right)=p_{j}\left(\left\{a_{i} \vee_{d} b_{i}\right\}_{i \in I}\right)=a_{j} \vee_{d} b_{j}$ and $p_{j}(a) \vee_{d} p_{j}(b)=p_{j}\left(\left\{a_{i}\right\}_{i \in I}\right) \vee_{d} p_{j}\left(\left\{b_{i}\right\}_{i \in I}\right)=a_{j} \vee_{d} b_{j}$ and then $p_{j}\left(\omega_{0}(\{D\})\right)=$ $\varphi_{0}(\{\emptyset\}) \Longleftrightarrow p_{j}\left(\left\{e_{i}=1\right\}_{i \in I}\right)=1 \Longleftrightarrow p_{j}\left(e_{\omega_{1}}\right)=e e_{v_{d}} ;$ analogously we prove that p_{j}, for each $j \in I$ keeps the operations ω_{2} and $\bar{\omega}_{0}$, too. So, it was built the universal algebra $\left(\aleph^{I}, \tilde{\Omega}\right)$ with $\tilde{\Omega}=\left\{\omega_{1}, \omega_{2}, \omega_{0}, \bar{\omega}_{0}\right\}$ of the kind τ described above.

We prove the property of universality (\mathcal{U}).
We observe for this purpose that the u_{i} morphismes for each $i \in I$, presumes the coditions: for each $x, y \in S, u_{i}(x \top y)=u_{i}(x) \vee_{d} u_{i}(y) ; u_{i}(x \perp y)=u_{i}(x) \wedge_{d}$ $u_{i}(y) ; u_{i}\left(\sigma_{0}(\{\emptyset\})\right)=\varphi_{0}(\{\emptyset\}) \Longleftrightarrow u_{i}\left(e_{T}\right)=e_{v_{d}}=1$ and $u_{i}\left(\bar{\sigma}_{0}(\{\emptyset\})\right)=\bar{\varphi}_{0}(\{\emptyset\}) \Longleftrightarrow$ $u_{i}\left(\bar{e}_{\perp}\right)=e_{\lambda_{d}}=0$ which show also the similarity (bijective) between $\bar{\Omega}$ and Ω. We also observe that $(S, \bar{\Omega})$ and $\left(\aleph^{I}, \tilde{\Omega}\right)$ are of the same kind and there is a similarity (bijective) between $\bar{\Omega}$ and $\tilde{\Omega}$ given by $T \Longleftrightarrow \omega_{1} ; \perp \Longleftrightarrow \omega_{2} ; \sigma_{0} \Longleftrightarrow \omega_{0} ; \bar{\sigma}_{0} \Longleftrightarrow \bar{\omega}_{0}$.

We define the corespondance $u: A \rightarrow \aleph^{I}$ by $u(x)=\left\{u_{i}(x)\right\}_{i \in I}$.
u is the function:

- for each $x \in A,(\exists) u_{i}(x) \in \aleph$ for each $i \in I$ (u_{i}-functions) so (\exists) $\left\{u_{i}(x)\right\}_{i \in I}$ that can be imagines for x;

E. RĂDESCU, N. RÅDESCU AND C. DUMITRESCU

- $x_{1}=x_{2} \Longrightarrow u\left(x_{1}\right)=u\left(x_{2}\right)$ because $x_{1}=x_{2}$ and u_{i}-functions lead to $u_{i}\left(x_{1}\right)=$ $u_{i}\left(x_{2}\right)$ for each $i \in I \Longrightarrow\left\{u_{i}\left(x_{1}\right)\right\}_{i \in I}=\left\{u_{i}\left(x_{2}\right)\right\}_{i \in I} \Longrightarrow u\left(x_{1}\right)=u\left(x_{2}\right)$.
u is a morphisme: for each $x, y \in A, u(x \top y)=\left\{u_{i}(x \top y)\right\}_{i \in I}=\left\{u_{i}(x) \vee_{d} u_{i}(y)\right\}_{i \in I}=$ $\omega_{1}\left(\left\{u_{i}(x)\right\}_{i \in I},\left\{u_{i}(y)\right\}_{i \in I}\right)=\omega_{1}(u(x), u(y))$. Then $u\left(\sigma_{0}(\{\emptyset\})\right)=\omega_{0}(\{\emptyset\}) \Longleftrightarrow$ $u\left(e_{T}\right)=e_{\omega_{1}}$ because for each $\left\{a_{i}\right\}_{i \in I} \in \aleph^{I}, \omega_{1}\left(\left\{a_{i}\right\}_{i \in I},\left\{u_{i}\left(e_{T}\right)\right\}_{i \in I}\right)=\left\{a_{i} \vee_{d} u_{i}\left(e_{T}\right)\right\}_{i \in I}=$ $\left\{a_{i} \vee_{d} 1\right\}_{i \in I}=\left\{a_{i}\right\}_{i \in I}$.

Analogously we prove that u keeps the operations: \perp and $\bar{\sigma}_{0}$.
Besides the condition $p_{j} \circ u=u_{j}$, for each $j \in I$ is verified (by the definition: for each $\left.x \in S,\left(p_{j} \circ u\right)(x)=p_{j}(u(x))=p_{j}\left(\left\{u_{i}(x)\right\}_{i \in I}\right)=u_{j}(x)\right)$.

For the singleness of u we consider u and \bar{u}, two morphismes so that $p_{j} \circ u=u_{j}$ (1) and $p_{j} \circ \bar{u}=u_{j}(2)$, for every $j \in I$. Then for every $x \in A$, if $u(x)=\left\{u_{i}(x)\right\}_{i \in I}$ and $\bar{u}(x)=\left\{z_{i}\right\}_{i \in I}$ we can see that $y_{j}=u_{j}(x)=\left(p_{j} \circ \bar{u}\right)(x)=p_{j}\left(\left\{z_{i}\right\}_{i \in I}\right)=z_{j}$, for every $j \in I$ i.e. $u(x)=\bar{u}(x)$, for every $x \in A \Longleftrightarrow u=\bar{u}$.

Consequence. Particularly, taking $A=\aleph^{I}$ and $u_{i}=p_{i}$ we obtain: the morphisme $u: \aleph^{I} \rightarrow \aleph^{i}$ verifies the condition $p_{j} \circ u=p_{j}$, for every $j \in I$, if and only if, $u=1_{\aleph_{I}}$.

The property of universality establishes the universal algebra ($\aleph^{I}, \tilde{\Omega}$) until an isomorphisme as it results from:

Theorem 0.2. If (P, Ω) is an universal algebra of the same kind as (\aleph, Ω) and p_{i}^{\prime} : $P \rightarrow \aleph, i \in I$ a family of morphismes between (P, Ω) and (\aleph, Ω) so that for every universal algebra $(A, \bar{\Omega})$ and every morphisme $u_{i}: A \rightarrow \aleph$, for every $i \in I$ between $(A, \bar{\Omega})$ and (\aleph, Ω) it exists an unique morphisme $u: A \rightarrow P$ with $p_{j}^{\prime} \circ u=u_{i}$, for every $i \in I$, then it exists an unique isomorphisme $f: P \rightarrow \aleph^{I}$ with $p_{i} \circ f=p_{i}^{\prime}$, for every $i \in I$.

Proof. From the property of universality of $\left(\aleph^{I}, \widetilde{\Omega}\right)$ it results an unique $f: P \rightarrow \mathbb{N}^{I}$ so that for every $i \in I, p_{i} \circ f=p_{i}^{\prime}$ with f morphisme between (P, Ω) and $\left(\aleph^{I}, \tilde{\Omega}\right)$. Applying now the same property of universality to $(P, \Omega) \Longrightarrow$ exists an unique \bar{f} : $\aleph^{I} \rightarrow P$ so that $p_{i}^{\prime} \circ \bar{f}=p_{i}$, for every $i \in I$ with \bar{f} morphisme between ($\aleph^{I}, \tilde{\Omega}$) and (P, Ω). Then $p_{j}^{\prime} \circ \bar{f}=p_{j} \Longleftrightarrow p_{j} \circ(f \circ \bar{f})=p_{j}$, using the last consequence, we get $f \circ \bar{f}=1_{\mathbb{N}^{I}}$. Analogously, we prove that $f \circ \bar{f}=1_{P}$ from where $\bar{f}=f^{-1}$ and the morphisme f becomes isomorphisme.

We could emphasize other properties (a family of finite support or the case I-filter) but we remain at these which are strictly necessary to prove the proposed assertion (Problem 3).
b) Firstly it was built $\left(\aleph^{I}, \tilde{\Omega}\right)$ being an universal algebra more complexe (with four operations). We try now a similar construction starting from ($\left.\aleph, \Omega^{*}\right)$ with $\Omega^{*}=$

SMARANDACHE'S FUNCTION

$\left(\vee, \wedge, \psi_{0}\right)$ with " \vee " and " ψ_{0} " defined as above and $\wedge: \aleph^{2} \rightarrow \aleph$ with $x \wedge y=\inf \{x, y\}$ for every $x, y \in \aleph$.

Theorem 0.3. Let by $\left(\aleph, \Omega^{*}\right)$ the above universal algebra and I a set. Then:
(i) $\left(\aleph^{I}, \theta\right)$ with $\theta=\left\{\theta_{1}, \theta_{2}, \theta_{0}\right\}$ becomes an universal algebra of the same kind τ as $\left(\aleph, \Omega^{*}\right)$ so $\tau: \theta \rightarrow \aleph$ is

$$
\tau=\left(\begin{array}{ccc}
\theta_{1} & \theta_{2} & \theta_{0} \\
2 & 2 & 0
\end{array}\right)
$$

(ii) For every $j \in I$ the canonical projection $p_{j}: \aleph^{I} \rightarrow \aleph$ defined by every $a=$ $\left\{a_{i}\right\}_{i \in I} \in \aleph^{I}, p_{j}(a)=a_{j}$ is a surjective morphisme between $\left(\aleph^{I}, \theta\right)$ and $\left(\aleph, \Omega^{*}\right)$ and $\operatorname{ker} p_{j}=\left\{a \in \aleph^{I}: a=\left\{a_{i}\right\}_{i \in I}\right.$ and $\left.a_{j}=0\right\}$ where by definition we have $\operatorname{ker} p_{j}=$ $\left\{a \in \aleph^{I}: p_{j}(a)=e_{V}\right\} ;$
(iii) For every $j \in I$ the canonical injection $q_{j}: \aleph \rightarrow \aleph^{I}$ for every $x \in \aleph, q_{j}(x)=$ $\left\{a_{i}\right\}_{i \in I}$ where $a_{i}=0$ if $i \neq j$ and $a_{j}=x$ is an injective morphisme between (κ, Ω^{*}) and $\left(\aleph^{I}, \theta\right)$ and $q_{j}(\aleph)=\left\{\left\{a_{i}\right\}_{i \in I}: a_{i}=0, \forall i \in I-\{j\}\right\}$;
(iv) If $j, k \in I$ then:

$$
p_{j} \circ q_{k}=\left\{\begin{array}{cl}
\mathcal{O} \text {-the null morphisme } & \text { for } j \neq k \\
1_{\aleph} \text {-the identical morphisme } & \text { for } j=k
\end{array}\right.
$$

Proof. (i) We well define the operations $\theta_{1}:\left(\aleph^{I}\right)^{2} \rightarrow \aleph^{I}$ by $\forall a=\left\{a_{i}\right\}_{i \in I} \in \aleph^{I}$ and $b=\left\{b_{i}\right\}_{i \in I} \in \aleph^{I}, \theta_{1}(a, b)=\left\{a_{i} \vee b_{i}\right\}_{i \in I} ; \theta_{2}:\left(\aleph^{I}\right)^{2} \rightarrow \aleph^{I}$ by $\theta_{2}(a, b)=\left\{a_{i} \wedge b_{i}\right\}_{i \in I}$ and $\theta_{0}:\left(\aleph^{I}\right)^{0} \rightarrow \aleph^{I}$ by $\theta_{0}(\{\emptyset\})=\left\{e_{i}=0\right\}_{i \in I}$ an unique particular element fixed by θ_{0}, but with the role of neutral element for θ_{1} and noted $e_{\theta_{1}}$ (the verifications are immediate).
(ii) The canonical projections are proved to be morphismes (see the step a)), they keep all the operations and

$$
\operatorname{ker} p_{j}=\left\{a=\left\{a_{i}\right\}_{i \in I} \in \aleph^{I}: p_{j}(a)=e_{v}\right\}=\left\{a \in \aleph^{I}: a_{j}=0\right\} .
$$

(iii) For every $x, y \in \aleph, q_{j}(x \vee y)=\left\{c_{i}\right\}_{i \in I}$ where $c_{i}=0$ for every $i \neq j$ and $c_{j}=x \vee y$ and

$$
\theta_{1}\left(\left\{\begin{array}{l}
a_{i}=0, \\
a_{j}=x
\end{array} \quad \forall i \neq j\right\},\left\{\begin{array}{l}
b_{i}=0, \quad \forall i \neq j \\
b_{j}=y
\end{array}\right\}\right)=\left\{\begin{array}{l}
c_{i}=0 \\
c_{j}=x \vee y
\end{array}, \forall i \neq j\right\}
$$

i.e. $q_{j}(x \vee y)=\theta_{1}\left(q_{j}(x), q_{j}(y)\right)$ with $j \in I$, therefore q_{j} keeps the operation " \vee " for every $j \in I$. Then $q_{j}\left(\psi(\{\emptyset\})=\theta_{0}(\{\emptyset\}) \Longleftrightarrow q_{j}\left(e_{v}\right)=\left\{e_{i}=0\right\}_{i \in I} \Longleftrightarrow q_{j}(0)=\right.$ $\left\{e_{i}=0\right\}_{i \in I}=e_{\theta_{1}}$ because $\forall a=\left\{a_{i}\right\}_{i \in I} \in \aleph^{I}, \theta_{1}\left(q_{j}(0), a\right)=\theta_{1}\left(\left\{e_{i}=0\right\}_{i \in I},\left\{a_{i}\right\}_{i \in I}\right)=$

E. RĂDESCU, N. RĂDESCU AND C. DUMITRESCU

$\left\{e_{i} \vee a_{i}\right\}_{i \in I}=\left\{a_{i}\right\}_{i \in I}=a$ enough for $q_{j}(0)=e_{\theta_{1}}$ because θ_{1} is obviously comutative -this observation refers to all the similar situations met before. Analogously we also prove that θ_{2} is kept by q_{j} and this one for every $j \in I$.
(iv) For every $x \in \aleph,\left(p_{j} \circ q_{k}\right)(x)=p_{j}\left(q_{k}(x)\right)=p_{j}\left(\left\{\begin{array}{l}a_{i}=0 \\ a_{k}=x\end{array}, \forall i \neq k\right\}\right)=$ $0 \Longrightarrow p_{j} \circ q_{k}=\mathcal{O}$ for $j \neq k$ and $\left(p_{j} \circ q_{j}\right)(x)=p_{j}\left(q_{j}(x)\right)=p_{j}\left(\left\{\begin{array}{l}a_{i}=0 \\ a_{j}=x\end{array}, \forall i \neq j\right\}\right)=$ $x \Longrightarrow p_{j} \circ q_{k}=1_{\mathrm{N}}$ for $j=k$.

The universal algebra $\left(\aleph^{I}, \theta\right)$ satisfies the following property of universality:
Theorem 0.4. For every $(A, \bar{\theta})$ with $\bar{\theta}=\left\{T, \perp, \theta_{0}\right\}$ an universal algebra of the some kind $\tau: \bar{\theta} \rightarrow \mathcal{\aleph}$

$$
\tau=\left(\begin{array}{ccc}
T & \perp & \theta_{0} \\
2 & 2 & 0
\end{array}\right)
$$

as $\left(\aleph^{I}, \theta\right)$ and $u_{i}: A \rightarrow \aleph$ for every $i \in I$ morphismes between $(A, \bar{\theta})$ and $\left(\aleph, \Omega^{*}\right)$, exists an unique $u: A \rightarrow \aleph^{I}$ morphisme between the universal algebras $(A, \bar{\theta})$ and $\left(\aleph^{I}, \theta\right)$ so that $p_{j} \circ u=u_{j}$, for every $j \in I$ with $p_{j}: \aleph^{I} \rightarrow \aleph, \forall a=\left\{a_{i}\right\}_{i \in I} \in$ $\aleph^{I}, p_{j}(a)=a_{j}$ the canonical projections morphismes between $\left(\aleph^{I}, \theta\right)$ and $\left(\aleph, \Omega^{*}\right)$.

Proof. The proof repeats the other one from the Theorem 1, step a).
The property of universality establishes the universal algebra $\left(\aleph^{I}, \theta\right)$ until an isomorphisme, which we can state by:

If $\left(P, \Omega^{*}\right)$ it is an universal algebra of the same kind as $\left(\aleph, \Omega^{*}\right)$ and $p_{i}^{\prime}: P \rightarrow \aleph$ for every $i \in I$ a family of morphismes between (P, Ω^{*}) and (\aleph, Ω^{*}) so that for every universal algebra $(A, \bar{\theta})$ and every morphismes $u_{i}: A \rightarrow \aleph, \forall i \in I$ between $(A, \bar{\theta})$ and (\aleph, Ω^{*}) exists an unique morphisme $u: A \rightarrow P$ with $p_{i}^{\prime} \circ u=u_{i}$, for every $i \in I$ then it exists an unique isomorphisme $f: P \rightarrow \aleph^{I}$ with $p_{i} \circ f=p_{i}^{\prime}$, for every $i \in I$.
c) This third step contains the proof of the stated proposition (Problem 3).

As $\left(\aleph^{*}, \Omega\right)$ with $\Omega=\left(V_{d}, l_{0}\right\}$ is an universal algebra, in accordance with step a) it exists an universal algebra $\left(\left(\aleph^{*}\right)^{I}, \Omega\right)$ with $\Omega=\left\{\omega_{1}, \omega_{0}\right\}$ defined by:

$$
\begin{aligned}
\omega_{1} & :\left(\left(\aleph^{*}\right)^{I}\right)^{2} \rightarrow\left(\aleph^{*}\right)^{I} \text { by every } a=\left\{a_{i}\right\}_{i \in I} \text { and } b=\left\{b_{i}\right\}_{i \in I} \in\left(\aleph^{*}\right)^{I}, \\
\omega_{1}(a, b) & =\left\{a_{i} V_{d} b_{i}\right\}_{i \in I}
\end{aligned}
$$

and

$$
\omega_{0}:\left(\left(\aleph^{*}\right)^{I}\right)^{0} \rightarrow\left(\aleph^{*}\right)^{I} \text { by } \omega_{0}(\{\emptyset\})=\left\{e_{i}=1\right\}_{i \in I}=e_{\omega_{1}}
$$

the canonical projections being certainly morphismes between $\left(\left(\aleph^{*}\right)^{I}, \Omega\right)$ and $\left(\aleph^{*}, \Omega\right)$.
As $\left(\aleph, \Omega^{\prime}\right)$ with $\Omega^{\prime}=\left\{V, \Psi_{0}\right\}$ is an universal algebra, in accordance with step b) it exists an universal algebra $\left(\aleph^{I}, \Omega^{\prime}\right)$ with $\Omega^{\prime}=\left\{\theta_{1}, \theta_{0}\right\}$ defined by:

$$
\theta_{1}:\left(\aleph^{I}\right)^{2} \rightarrow \aleph^{I} \text { by every } a=\left\{a_{i}\right\}_{i \in I}, b=\left\{b_{i}\right\}_{i \in I} \in \aleph^{I}, \theta_{1}(a, b)=\left\{a_{i} V_{d} b_{i}\right\}_{i \in I}
$$

and

$$
\theta_{0}:\left(\aleph^{I}\right)^{0} \rightarrow \aleph^{I} \text { by } \theta_{0}(\{\emptyset\})=\left\{e_{i}=0\right\}_{i \in I}=e_{\theta_{1}}
$$

The universal algebras $\left(\left(\aleph^{*}\right)^{I}, \Omega\right)$ and $\left(\aleph^{I}, \Omega^{\prime}\right)$ are of the same kind

$$
\begin{array}{ll}
\omega_{1} & \omega_{2} \\
2 & 0
\end{array}=\begin{aligned}
& \theta_{1} \\
& 2
\end{aligned} \theta_{0}
$$

We use the property of universality for universal algebra ($\mathcal{K}^{\prime}, \Omega^{\prime}$): an universal algebra (A, Ω) can be $\left(\left(\aleph^{*}\right)^{I}, \Omega\right)$ because they are the same kind; the morphismes $u_{i}: A \rightarrow \aleph$ from the assumption will be $\bar{s}_{i}:\left(\aleph^{*}\right)^{I} \rightarrow \aleph^{*}$ by every $a=\left\{a_{i}\right\}_{i \in I} \in$ $\left(\aleph^{*}\right)^{I}, \bar{s}_{j}(a)=\bar{s}_{j}\left(\left\{a_{i}\right\}_{i \in I}\right)=s\left(a_{j}\right) \Longleftrightarrow \bar{s}_{j}=s \circ \dot{p}_{j}$ for every $j \in I$ where $s: \aleph^{*} \rightarrow \aleph$ is Smarandache's function and $\bar{p}_{j}:\left(\aleph^{*}\right)^{I} \rightarrow \aleph^{*}$ the canonical projections, morphismes between $\left(\left(\aleph^{*}\right)^{I}, \Omega\right)$ and $\left(\aleph^{*}, \Omega\right)$. As s is a morphisme berween $\left(\aleph^{*}, \Omega\right)$ and $\left(\aleph, \Omega^{\prime}\right), \bar{s}_{j}$ are morphismes (as a composition of morphismes) for every $j \in I$. The assumptions of the property of universality being provided \Longrightarrow exists an unique $s:\left(\aleph^{*}\right)^{I} \rightarrow \aleph^{I}$ morphism between $\left(\left(\aleph^{*}\right)^{I}, \Omega\right)$ and $\left(\aleph^{I}, \Omega\right)$ so that $p_{j} \circ s=\dot{s}_{j} \Longleftrightarrow p_{j} \circ s=S \circ \dot{p}_{j}$, for every $j \in I$. We finish the proof noticing that s is also surjection: $p_{j} \circ S$ surjection (as a composition of surjections) $\Longrightarrow s$ surjection.

Remark: The proof of the step 3 can be done directly. As the universal algebras from the statement are built, we can define a correspondence $s:\left(\aleph^{*}\right)^{I} \rightarrow\left(\aleph^{*}\right)^{I}$ by every $a=\left\{a_{i}\right\}_{i \in I} \in\left(\aleph^{*}\right)^{I}, s(a)=\left\{S\left(a_{i}\right)\right\}_{i \in I}$, which is a function, then morphisme between the universal algebra of the same kind $\left(\left(\aleph^{*}\right)^{I}, \Omega\right)$ and ($\left.\aleph^{I}, \Omega^{\prime}\right)$ and is also surjective, the required conditions being satisfied evidently.

The stated Problem finds a prolongation s of the Smarandache function S to more comlexe sets (for $I=\{1\} \Rightarrow s=S$). The properties of the function s for the limitation to \aleph^{*} could bring new properties for the Smarandache function.

1. References

[1] Purdea, I., Pic, Gh. (1977). Tratat de algebră modernă, vol. 1. (Ed. Academiei Române, Bucuresti)
[2] Rădescu, E., Rădescu, N. and Dumitrescu, C. (1995) Some Elementary Algebraic Considerations Inspired by the Smarandache Function (Smarandache Function I. vol. 6, no. 1, June, p 50-54)
[3] Smarandache, F. (1980) A Function in the Number Theory (An. Univ.
Timiṣoara, Ser. St. Mat., vol. XVIII, fasc. 1, p. 79-88)
Departament of Mathematics, University of Craiova A.I.Cuza, no. 13, Craiova 1100, Romania

