SOME MORE IDEAS ON SMARANDACHE FACTOR PARTITIONS

(Amarnath Murthy , S.E. (E \&T), Well Logging Services, Oil And Natural Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRACT: In [1] we define SMARANDACHE FACTOR

 PARTITION FUNCTION (SFP), as follows:Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}$ be a set of r natural numbers and $p_{1}, p_{2}, p_{3}, \ldots p_{r}$ be arbitrarily chosen distinct primes then $F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}\right)$ called the Smarandache Factor Partition of $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{5}\right)$ is defined as the number of ways in which the number
$N=\quad p_{1}^{\alpha 1} \quad p_{2}^{\alpha 2} p_{3}^{\alpha 3} \ldots p_{r}^{\alpha r} \quad$ could be expressed as the product of its' divisors. For simplicity, we denote $F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right.$
. $\left.\alpha_{r}\right)=F^{\prime}(N)$, where

$N=$| α_{1} | α_{2} | α_{3} | p_{1} | p_{2} | p_{3} | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$p_{r}^{\alpha_{r}} \ldots{ }^{\alpha_{n}}$

and p_{r} is the $r^{\text {th }}$ prime. $p_{1}=2, p_{2}=3$ etc.
In this note another result pertaining to SFPs has been derived.

DISCUSSION:

Let

$N=$| p_{1} | $p_{2}^{\alpha_{2}}$ | $p_{3}^{\alpha_{3}}$ | \cdots |
| :--- | :--- | :--- | :--- |$p_{r}^{\alpha_{r}}$

(1) $L(N)=$ length of that factor partition of N which contains the maximum number of terms. In this case we have

$$
L(N)=\sum_{i=1}^{r} \alpha_{i}
$$

(2)

$$
A_{L(N)}=A \text { set of } L(N) \text { distinct primes. }
$$

(3) $B(N)=\{p: p \mid N, p$ is a prime. $\}$

$$
B(N)=\left\{p_{1} ; p_{2}, \ldots p_{r}\right\}
$$

(4) $\Psi\left[N, A_{L(N)}\right]=\left\{x \mid d(x)=N\right.$ and $\left.B(x) \subseteq A_{L(N)}\right\}$, where $d(x)$ is the number of divisors of x.

To derive an expression for the order of the set $\Psi\left[N, A_{L(N)}\right]$ defined above.

There are $F^{\prime}(N)$ factor partitions of N. Let F_{1} be one of them.
$F_{1} \cdots \cdots=s_{1} X s_{2} X s_{3} X \ldots X s_{t}$.
if

$$
\theta=\begin{array}{llllllll}
& s_{1}-1 & s_{2}-1 & s_{3}-1 & s_{t}-1 & 0 & 0 & 0 \\
p_{1} & p_{2} & p_{3} & \ldots . p_{t} & p_{t+1} & p_{t+2} & \ldots & p_{L(N)}
\end{array}
$$

where $p_{t} \in A_{L(N)}$, then $\theta \in \Psi\left[N, A_{L(N)}\right]$ for
$d(\theta)=s_{1} X s_{2} X s_{3} X \ldots X s_{t} X 1 \times 1 \times 1 \ldots=N$
Thus each factor partition of N generates a few elements of Ψ.
Let $E\left(F_{1}\right)$ denote the number of elements generated by F_{1}
$F_{1} \rightarrow-\cdots \rightarrow N=s_{1} X s_{2} X s_{3} X \ldots X s_{t}$.
multiplying the right member with unity as many times as required to make the number of terms in the product equal to $L(N)$.

$$
N=\prod_{k=1}^{L(N)} S_{k}
$$

where $s_{t+1}=s_{t+2}=s_{t+3}=\ldots=s_{L(N)}=1$
Let x_{1} s's are equal
$x_{2} \quad$ s's are equal
$x_{m} \quad$ s's are equal
such that $x_{1}+x_{2}+x_{3}+\ldots+x_{m}=L(N)$. Where any x_{i} can be unity also.
Then we get
$E\left(F_{1}\right)=\{L(N)\}!/\left\{\left(x_{1}\right)!\left(x_{2}\right)!\left(x_{3}\right)!\ldots\left(x_{m}\right)!\right\}$
summing over all the factor partitions we get

$$
O\left(\Psi\left[N, A_{L(N)}\right]\right)=\sum_{k=1}^{F^{\prime}(N)} E\left(F_{k}\right) \quad \cdots \cdots(7.1)
$$

Example:

$$
N=12=2^{2} \cdot 3, L(N)=3, F^{\prime}(N)=4
$$

Let $A_{L(N)}=\{2,3,5\}$
$F_{1} \cdots \rightarrow N=12=12 \times 1 \times 1, \quad x_{1}=2, x_{2}=1$
$E\left(F_{1}\right)=3!/\{(2!)(1!)\}=3$
$F_{2} \cdots \rightarrow N=12=6 \times 2 \times 1, x_{1}=1, x_{2}=1, x_{3}=1$
$E\left(F_{2}\right)=3!/\{(1!)(1!)(1!)\}=6$
$F_{3} \cdots \rightarrow N=12=4 \times 3 \times 1, x_{1}=1, x_{2}=1, x_{3}=1$
$E\left(F_{3}\right)=3!/\{(1!)(1!)(1!)\}=6$
$F_{4} \cdots \rightarrow N=12=3 \times 2 \times 2, \quad x_{1}=1, x_{2}=2$
$E\left(F_{4}\right)=3!/\{(2!)(1!)\}=3$

$$
O\left(\Psi\left[N, A_{L(N)}\right]\right)=\sum_{k=1}^{F^{\prime}(N)} E\left(F_{k}\right)=3+6+6+3=18
$$

To verify we have

$$
\begin{aligned}
& \Psi\left[N, A_{L(N)}\right]=\left\{2^{11}, 3^{11}, 5^{11}, 2^{5} \times 3,2^{5} \times 3,3^{5} \times 2,3^{5} \times 5,5^{5} \times 2,\right. \\
& 5^{5} \times 3,2^{3} \times 3^{2}, 2^{3} \times 5^{2}, 3^{3} \times 2^{2}, 3^{3} \times 5^{2}, 5^{3} \times 2^{2}, 5^{3} \times 3^{2}, 2^{2} \times 3 \times 5, \\
& \left.3^{2} \times 2 \times 5,5^{2} \times 2 \times 3,\right\}
\end{aligned}
$$

REFERENCES:

[1] "Amarnath Murthy", 'Generalization Of Partition Function, Introducing 'Smarandache Factor Partition', SNJ, Vol. 11, No. 1-2-3, 2000.
[2] "The Florentine Smarandache" Special Collection, Archives of American Mathematics, Centre for American History, University of Texas at Austin, USA.

