SOME MORE IDEAS ON SMARANDACHE FACTOR PARTITIONS

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRACT: In [1] we define SMARANDACHE FACTOR PARTITION FUNCTION (SFP), as follows:

Let α_1 , α_2 , α_3 , ..., α_r be a set of r natural numbers and p_1 , p_2 , p_3 ,..., p_r be arbitrarily chosen distinct primes then $F(\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_r)$ called the Smarandache Factor Partition of $(\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_r)$ is defined as the number of ways in which the number

N = $p_1 p_2 p_3 \dots p_r$ could be expressed as the

product of its' divisors. For simplicity, we denote $F(\alpha_1, \alpha_2, \alpha_3, ...$

 $(\alpha_r) = F'(N)$, where

 $N = p_1 p_2 p_3 \dots p_r \dots p_n$

and p_r is the rth prime. $p_1 = 2$, $p_2 = 3$ etc.

In this note another result pertaining to SFPs has been derived.

DISCUSSION:

Let

 $N = p_1 p_2 p_3 \dots p_r$

(1) L(N) = length of that factor partition of N which contains the maximum number of terms. In this case we have

280

$$L(N) = \sum_{i=1}^{r} \alpha_i$$

 $A_{L(N)} = A$ set of L(N) distinct primes.

(3) B(N) = { p: p | N , p is a prime. }

 $B(N) = \{ p_1; p_2, \ldots, p_r \}$

(4) $\Psi[N, A_{L(N)}] = \{ x \mid d(x) = N \text{ and } B(x) \subseteq A_{L(N)} \}$, where d(x) is the number of divisors of x.

To derive an expression for the order of the set Ψ [N, A_{L(N)}] defined above.

There are F'(N) factor partitions of N. Let F_1 be one of them. $F_1 \xrightarrow{} N = s_1 X s_2 X s_3 X \dots X s_t$. if

 $\theta = p_1 \qquad p_2 \qquad p_3 \qquad \dots \\ p_t = p_t \qquad p_{t+1} p_{t+2} \qquad \dots \\ p_{L(N)} \qquad p_{t+1} p_{t+2} \qquad \dots \\ p_{t+1} p_{t+1} p_{t+2} \qquad \dots \\ p_{t+1} p_{t+1} p_{t+2} \qquad \dots \\ p_{t+1} p_{t+2} \qquad \dots \\$

where $p_t \in A_{L(N)}$, then $\ \theta \ \in \ \Psi[$ N, $A_{L(N)}]$ for

 $d(\theta) = s_1 X s_2 X s_3 X \dots X s_t X 1 X 1 X 1 \dots = N$

Thus each factor partition of N generates a few elements of Ψ .

Let $E(F_1)$ denote the number of elements generated by F_1

$$F_1 \longrightarrow N = s_1 X s_2 X s_3 X \dots X s_t$$

multiplying the right member with unity as many times as required to make the number of terms in the product equal to L(N).

$$N = \prod_{k=1}^{L(N)} s_k$$

281

where $s_{t+1} = s_{t+2} = s_{t+3} = \dots = s_{L(N)} = 1$ Let x_1 s's are equal x_2 s's are equal \vdots \vdots x_m s's are equal

such that $x_1 + x_2 + x_3 + \ldots + x_m = L(N)$. Where any x_i can be unity also. Then we get

 $E(F_1) = \{L(N)\}! / \{(x_1)!(x_2)!(x_3)! \dots (x_m)!\}$

summing over all the factor partitions we get

$$O(\Psi[N, A_{L(N)}]) = \sum_{k=1}^{F'(N)} E(F_k)$$
 -----(7.1)

Example:

$$N = 12 = 2^2.3$$
, $L(N) = 3$, $F'(N) = 4$

Let $A_{L(N)} = \{2, 3, 5\}$

 $F_1 \longrightarrow N = 12 = 12 \times 1 \times 1$, $x_1 = 2$, $x_2 = 1$

 $E(F_1) = 3! / \{(2!)(1!)\} = 3$

 $F_2 \dashrightarrow N = 12 = 6 \ X \ 2 \ X \ 1 \ , \ x_1 = 1 \ , \ x_2 = 1, \ x_3 = 1$

$$E(F_2) = 3! / \{(1!) (1!)(1!)\} = 6$$

F₃ ----- N = 12 = 4 X 3 X 1 , x₁ = 1 , x₂ = 1, x₃ = 1

 $E(F_3) = 3! / \{(1!) (1!)(1!)\} = 6$

 $F_4 \longrightarrow N = 12 = 3 X 2 X 2 , x_1 = 1 , x_2 = 2$

 $E(F_4) = 3! / \{(2!)(1!)\} = 3$

$$O(\Psi[N, A_{L(N)}]) = \sum_{k=1}^{F'(N)} E(F_k) = 3 + 6 + 6 + 3 = 18$$

To verify we have

$$\Psi[N, A_{L(N)}] = \{ 2^{11}, 3^{11}, 5^{11}, 2^{5} \times 3, 2^{5} \times 3, 3^{5} \times 2, 3^{5} \times 5, 5^{5} \times 2, 5^{5} \times 3, 2^{3} \times 3^{2}, 2^{3} \times 5^{2}, 3^{3} \times 2^{2}, 3^{3} \times 5^{2}, 5^{3} \times 2^{2}, 5^{3} \times 3^{2}, 2^{2} \times 3 \times 5, 3^{2} \times 2 \times 5, 5^{2} \times 2 \times 3, \}$$

REFERENCES:

÷

- [1] "Amarnath Murthy", 'Generalization Of Partition Function, Introducing 'Smarandache Factor Partition', SNJ, Vol. 11, No. 1-2-3, 2000.
- [2] "The Florentine Smarandache "Special Collection, Archives of American Mathematics, Centre for American History, University of Texas at Austin, USA.