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Abstract: For any positive integer n, let SSC(n) denote the 

Srnarandache square cOlnplelnentary function of n. In this paper vve 

prove that the difference ISSC(n + 1) - SSC(n)1 is unbounded. 
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F or any positive integer n, let SSC(n) denote the least pOSIL!Ve , 

integer n1 such ,that mn is a perfect square. Then SSC(n) is called the 

Slnarandache square c0l11plen1entary function (see [1]). In [3J, Russo 

asked if the difference 

lssrrn + 1') - ssrln)I ,-- - \ ' '-I -- - \" II 
( I) 
\ -, ) 
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IS bounded or unbounded? In this paper we solve this problelTI as 

follows. 

Theorenl. The difference is unbounded. 

Proof. Let d be a positive integer with square By [2, Theorenl 

10.9.1], there exist two posi ti ve integers x and y such that 
I 

x~ 1. (2) 

Let n=d)/. Then fro 111 (2) we get n+ 1 =x2
. By the define of the 

Snlarandache square cOll1plenlentary function, we have 

SSC(n)=d, SSC(n+ 1 1. (3 ) 

Therefore, by (3), we get 

lSSC(n + 1) - SSC(n)\ d 1. (4) 

Since there exist infinitely lnany positive integers d with square free, 

'vve see [rOlTI (4) that the difference (1) is unbounded. Thus, the theorem 

is proved. 
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