SOME PROBLEMS CONCERNING THE SMARANDACHE SQUARE COMPLEMENTARY FUNCTION (I)

Maohua Le
Department of Mathematics
Zhanjiang Normal College
29 Cunjin Road, Chikan
Zhanjiang, Guangdong
P.R.China

Abstract

For any positive integer n, let $\operatorname{SSC}(n)$ denote the Smarandache square complementary function of n. In this paper we prove that the difference $|S S C(n+1)-S S C(n)|$ is unbounded.

Key words: Smarandache square complementary function; difference; Pell equation

For any positive integer n, let $\operatorname{SSC}(n)$ denote the least positive integer m such that $m n$ is a perfect square. Then $\operatorname{SSC}(n)$ is called the Smarandache square complementary function (see [1]). In [3], Russo asked if the difference

$$
\begin{equation*}
\operatorname{SSC}(n+1)-\operatorname{ssc}(n) \tag{1}
\end{equation*}
$$

Supported by the National Natura! Science Foundation of China (No.10271104), the Guangdong Provincial Natural Science Foundation (No.011781) and the Natural Science Foundation of the Education Department of Guangdong Province (No.0161).
is bounded or unbounded? In this paper we solve this problem as follows.

Theorem. The difference is unbounded.
Proof. Let d be a positive integer with square free. By [2, Theorem 10.9.1], there exist two positive integers x and y such that

$$
\begin{equation*}
x^{2}-d y^{2}=1 \tag{2}
\end{equation*}
$$

Let $n=d y^{2}$. Then from (2) we get $n+1=x^{2}$. By the define of the Smarandache square complementary function, we have

$$
\begin{equation*}
S S C(n)=d, S S C(n+1)=1 \tag{3}
\end{equation*}
$$

Therefore, by (3), we get

$$
\begin{equation*}
|S S C(n+1)-S S C(n)|=d-1 \tag{4}
\end{equation*}
$$

Since there exist infinitely many positive integers d with square free, we see from (4) that the difference (1) is unbounded. Thus, the theorem is proved.

References

[1] C.Dumitrescu and V. Seleacu, Some notions and questions in number theory, Xiquan Pub. House, Phoenix-Chicago, 1994.
[2] L.-K. Hua, Introduction to number theory, Springer Verlag, Berlin, 1982.
[3] F.Russo, An introduction to the Smarandache square complementary function, Smarandache Notions J. 13 (2002), 160-173.

