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Abstract: In this paper we solve three diophantine equations
concerning the Smarandache square complementary function.
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For any positive integer #, let SSC(n) denote the Smarandache
square complementary function of n (see [1]). In [2], Russo proposed

three problems concerning the equations

SSC(n) = SSC(n+1)-SSC(n+2), (1)
SSC(n)-SSC(n+1)=SSC(n+2), (2)

and
SSC(n)-SSC(n +1) = SSC(n +2)SSC(n+3), (33

[}

in this paper we conmpletely solve these problems as foliow
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Theorem. The equations (1), (2) and (3) have no positive integer
solutions #.

Proof. Let » be a positive integer solution of (1). Then from (1) we

get
SSC(m=0 (mod SSC(n+1)). (4)

By [2, Theorem 6], we have
n=0 (mod SSC(n)), n+1=0 (mod SSC(r+1)).

—
wn
—

Since ged (n, nt+1)=1, we get from (5) that

ged (SSC(n), SSC(at1))=1. (6)
Hence, by (4) and (6), we obtain SSC(n+1)=1. It implies that n+!=m",
where m1 1s a positive integer.

[t m is even, then n is odd and ged (n, n+2)=1. It follows that

gcd (SSC(n), SSC(r+2))=1. (7)

Since SSC(n+1)=1, we get from (1) that
SSC(m)=SSC(n+2). (8)
The combination of (7) and (8) that SSC{m=SSC{m+23=1. It implies

that n=/*, where I is a positive integer. But, since ptl=m’, it is
impossible. ‘

Ilfn 1s odd, then ged(n, nt+2)=2. Since SSC(n+1)=1, then (8) holds
and SSC(n)=SSC(n+2)=2. It implies that

n‘:2x2, n+2=2yz, (9)
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where x,y are positive integers. Buy, by (9), we obtain y=x"+1, a
contradiction. Thus, the equation (1) has no positive integer solution #.

By the same argument, we can prove that (2) and (3) have no

positive integer solutions ». The theorem is proved.
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