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Abstract: In this paper vve solve three diophantine equations 

concerning the Slnarandache square cOlnplenlentary function. 
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For any positive integer 1'1, let SSC(n) denote the Snlarandache 

square c0111plen1cntary function of 1'1 (see [1 J). In [2J, Russo proposed 

three problelns concerning the equations 

and 

SSC(n) SSC(n + 1)· SSC(n + 2), 

SSC(n)· SSC(n + 1) == SSC(n + 2), 

SSC(n)· SSC(n + 1) == SSC(n + 2)SSC(n + 3), 

In this paper vve c0111pletely solve these probleiTlS as fot 

( 1 ) 

(2) 
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Theorem. The equations (1), (2) and (3) have no positive integer 

solutions n. 

Proof. Let J1 be a positive integer solution of(l). Then fron1 (1) we 

get 

SSC(n) 0 (n10d SSC(n+ 1 »). (4) 

By [2, TheorelTI 6], we have 

n 0 (1110d SSC(n», n+ 1-0 (1110d SSC(n+ 1 ). (5) 

Since gcd (11, 11+ 1 1, we get fro111 (5) that 

gcd (SSC(n), SSC(n+ 1 1. 

Hence, by (4) and (6), we obtain SSC(n+ 1 1. It il11plies that n+ 1 

vvhere 111 is a positive integer. 

Ifn1 is even, then n is odd and gcd (n, n+2)=l. It follows that 

gcd (SSC(n), SSC(n+2»=I. 

Since SSC(n+ 1)= 1, we get frol11 (1) that 

SSC(n)=SSC(n+2). 

(6) 

(7) 

fCi\ 

~.O) 

The cornbination of (7) and (8) that SSC(n)=SSC(n+2)=i. It i:nplies 

that n=P, where I is a positive integer. But, since n-t-I 

ilnpossible. 

, It IS 

If n is odd, then gcd(n, 11+2)=2. Since SSC(n+l)=l, then (8) holds 

and SSC(n)=SSC(n+2)=2. It ilnpiies that 
) ) 

11=2x- , n+ 2 =2)F , (9) 
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where X,y are positive integers. Buy, by (9), we obtain I, a 

contradiction. Thus, the equation (1) has no positive integer solution n. 

By the salne argurnent, \ve can prove that (2) and (3) have no 

positive integer solutions n. The theorenl is proved. 
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