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Abstract: In this paper we deternline all solutions of an 

exponential diophantine equations concerning the Slnarandache square 

conlplenlentary function. 

}(cy \vords: Snlarandache square cOlnplenlentary function; 

exponential diophantine equations 

F or any positive integer n, let SSC(n) denote the Stnarandache 

square c0l11pletnentary function of n (see [1]). In [3], Russo asked that 

solve the equati9n 

SSC(n)r + SSC(n)r-1 + ... + SSC(n) = n, r>l. (1) 

In th,is paper we cOlupletely solve this problelTI as follows. 

Theorenl. All positive integer solutions (n, r) of (1) are given by 

the following two cases. 
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( i ) (n, 1")=(363,5). 

( ii) en, r)=(ab2
, 2), where a and bare coprilne positive 

satisfying aI, b 1, -1 and a is square free. 

The proof of our thcoren1 needs the following leInn1a. 

Lenln13 ([2]). The equation 

xl" -1 ) 
--=Y-, x 1, Y 
x 1 

has only the positive integer solution (x, y, r)=(3, 11,5). 

(2) 

Proof of 'rheOrell1. Let (n, r) be a positive integer solution of (1). 

Let x=SSC( n). Then froin ( 1 ) we get 

x(x r
-

1 +"'+x+ l)=n, 
Since r 1 vve see froIn (3) that n 1. 

1. 

It is a well known fact that n can be expressed as 

(3 ) 

n = pal . .. pa., qfJI .. , qfJ/ (4) 
I s I I' 

where PI,"',ps and ql,"',q, are distinct prilnes, al, .. ,asare odd 

positive integers and /31"'" /3t are even positive integers. We see froln 

(4) that 

x=SSC(n)=PIO··ps. (5) 
(,.-1 

Since gcd (x, x + ... +x+ 1 1, we get frOITI (3), (4) and (5) that 

a 1 = ... = a = 1 and , s 

xr - 1 r-I 
. =X +"'+x+l 

x -1 
qfJI ... qfJ, 
It· (6) 

Since /31'''' , /3, are even, let b 2 
= qfl .. , qf' . Then b IS a posi ti ve 

integer satisfying 
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xr 1 == b2 . (7) 
x-I 

By Lenuna, if r 2, then fron1 (7) we get (x, b, r)=(3,11 ,5). It 
inlplies that (n, 63, 5) by (4) and (15). 

If r=2, then 'vve have 
/ x+ 1 =h~. (8) 

Let a=x. By (4), (5) and (7),we obtain the case ( ii ) ilTItnediately. Thus, 
the theoren1 is proved. 
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