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For any positive integer n, let SSC(n) denote the Slnarandache 

square cOlnpleI11entary function of 11 (see [1 J). Let 
C1J 1 

SI = a' 
rr:::jSSC(n) 

( 1 ) 

s - ~(_l)n 1 
2 - ,;-;:\ SSC(n) , 

(2) 

where a is a positive nUl11ber. In [2J, Russo proposed two problenls 
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1~heorenl 1. If a s 1, then SI is divergence. 

Theorem 2. The series S2 is divergence. 

Proof of Theorerl1 l.Let ((z) denote the Rien1ann C; -function. 

Then 'vve have 

(3) 

if z is a positive nUlTIber. It is a well kno\vn fact that SSC( n) S n for 

any n. Hence, by (1) and (3), 'vve get 

SI 2:: ((a). (4) 

Notice that ((a) is divergence if a s I . Thus, we see fro111 (4) that SI 

is divergence if a ~ 1. The theorelTI is proved. 

Proof of Theorem 2. Let 

S =: I .. 1 (5) 
111=0 SSC(2nl + 1) 

We see fron1 (2) that 
co 1 coco • 

S') = 2:(-1)11 == I L(_1)2 (2m+l) . (6) 
4 17=1' , SSC(n) k=Om=O" SSc\2 k (2n1 + 1)) 

Since 

SSC(2k (2m + 0)= f SSC(2m + 1), if k IS even, 
, l2SSC(2m + 1), if k is odd, 

(7) 

we get [rOITI (5), (6) and (7) that 

1 1 
S2 =-S+ -S+S+ S+S+···. 

2 2 
(8) 

It in1plies that S2 is divergence. The theorelTI is proved. 
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