SOME SOLUTIONS OF THE SMARANDACHE PRIME EQUATION

Maohua Le
Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Abstract. Let k be a positive integer with $\mathrm{k}>1$. In this paper we give some prime solutions ($x_{1}, x_{2}, \ldots, x_{k} y$) of the diophantine equation $\mathrm{y}=2 \mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{k}}+1$ with $2<\mathrm{x}_{1}<\mathrm{x}_{2}<\ldots<\mathrm{x}_{\mathrm{k}}<\mathrm{y}$.

Let k be a positive integer with $\mathrm{k}>1$. In [4, Problem 11], Smarandache conjectured that the equation
(1) $\mathrm{y}=2 \mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{k}}+1,2<\mathrm{x}_{1}<\mathrm{x}_{2}<\ldots<\mathrm{x}_{\mathrm{k}}$
has infinitely many prime solutions ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{k}}, \mathrm{y}$) for any k . This is a very dificult problem. The equation (1) is call the Smarandache prime equation (see [3, Notion 123]), while the authors gave solutions of (1) as follows.
$\mathrm{k}=2,\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}\right)=(17,19,647)$;
$k=3,\left(x_{1}, x_{2}, x_{3}, y\right)=(3,5,19,571)$
For any positive integer n, let p_{n} be the $n{ }^{\text {th }}$ odd prime, and let $q_{n}=2 p_{1} p_{2} \ldots p_{n}+1$. In this paper, by the calculating
result of [1] and [2], we give nine other solutions as follows.

$$
\left(x_{1}, x_{2}, \ldots, x_{k}, y\right)=\left(p_{1}, p_{2} \ldots, p_{k}, q_{k}\right)
$$

where $\mathrm{k}=4,10,66,138,139,311,368,495,514$.

References

1. J.P.Buhler, R.E.Crandall, M.A.Penk, Primes of The form $\mathrm{n}!\pm 1$ and $2 * 3 * 5 \ldots \mathrm{p} \pm 1$, Math. Comp. 38 (1982), 639-643.
2. H.Dubner, factorial and primorial primes, J.Recreational Math. 19 (1987), 197-203.
3. Dumitrescu and Seleacu, Some notions and Questions In Number Theory, Erhus Univ. Press, Glendale, 1994
4. F.Smarandache, Only Problems, not Solutions!, Xiquan Pub. House, Phoenix, Chicago, 1990.
