THE 2-DIVISIBILITY OF EVEN ELEMENTS OF THE SMARANDACHE DECONSTRUCTIVE SEQUENCE

Maohua Le
Abstract. In this paper we prove that if $n>5$ and $S D S(n)$ is even, then $S D S(n)$ is exactly divisible by 2^{7}.

Key words . Smarandache deconstructive sequence , 2divisibility.

The Smarandache deconstructive sequence is constructed by sequentially repeating the digits $1,2, \cdots, 9$ in the following way:
$1,23,456,7891, \cdots$,
which first appeared in [3]. For any positive integer n, let $S D S(n)$ denote the n-th element of the Smarandache deconstructive sequence . In [1] , Ashbacher considered the values of the first thirty elements of this sequence . He showed that $S D S(3)=456$ is divisible by $2^{3}, S D S(5)=23456$ by 2^{5} and all others by 2^{7}. Therefore, Ashbacher proposed the following question.

Question. If we form a sequence from the elements $\operatorname{SDS}(n)$ which the trailing digits are 6 , do the powers of 2 that divide them form a monotonically increasing sequence?

In this paper we completely solve the mentioned question. We prove the following result.

Theorem. If $n>5$ and $S D S(n)$ is even, them $S D S(n)$ is exactly divisible by 2^{7}.

Proof. By the result of [2], if $S D S(n)$ is even, then the trailing digit of it must be 6 . Moreover, if $n>5$,
then $n \geqslant 12$. Therefore, by (1), if $n>5$ and $S D S(n)$ is even, then we have $S D S(n)=89123456+k .10^{8}$, where k is a positie integer. Notice that $2^{8} \mid 10^{8}$ and 2^{7} || 89123456 . We see from (2) that $2^{7} \| \operatorname{SDS}(n)$. Thus, the theorem is proved.

References

[1] C.Ashbacher, Some problems concerning the Smarandache Deconstructive sequence, Smarandache Notions J. 11(2000), 120-122.
[2] M. -H. Le, The first digit and the trailing digit of elements of the Smarandache deconstructive sequence, Smarandache Notions J. to appear.
[3] F. Smarandache , only problems, Not Solutions, Xiquan Publishing House, Phoenix, Arizona, 1993.

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P.R. CHINA

