THE 3-DIVISIBILITY OF ELEMENTS OF THE
 SMARANDACHE DECONSTRUCTIVE SEQUENCE

Maohua Le

Abstract . For any positive integer n, let $S D S(n)$ be the n-th element of the Smarandache deconstructive sequence. In this paper we prove that if $3^{k} \| n$, then $3^{\mathrm{k}} \| S D S(n)$.

Key words . Smarandache deconstructive sequence , 3divisibility.

The Smarandache deconstructive sequence is constructed by sequentially repeating the digits $1,2, \cdots, 9$ in the following way:
(1)

$$
1,23,456,7891, \cdots
$$

which first appeared in [3]. For any positive integer n, let $S D S(n)$ denote the n-th element of this sequence. In [1] , Ashbacher showed that $3 \mid S D S(n)$ if and only if $3 \mid n$.Simultaneously, he proposed the following question.

Question. Let k be the largest integer such that 3^{k} $\mid n$. Is it true that $3^{k} \| \operatorname{SDS}(n) ?$
In this paper we completely solve the mentioned question .We prove the following result.

Theorem. If $3^{k} \| n$, then (2) bolds.
Proof. By [1, Tablel], the theorem holds for $n \leqslant 30$. Therefore, we may assume that $n>30$. If $3^{k} \| n$, then $n=3^{k} m$,
where m is a positive integer with $3 \mid m$.
By the resut of [2], If $k=1$, then we have
$(4) S D S(n)= \begin{cases}456789 \cdot 10^{a}+123456788889^{b}+123456, & \text { if } n \equiv 3(\bmod 9), \\ 789 \cdot 10^{a}+123456789^{b}+123, & \text { if } n \equiv 6(\bmod 9),\end{cases}$ where a, b are positive integers. Since $10^{\circ} \equiv 1(\bmod 9)$ and $123456789 \equiv 0(\bmod 9)$, we find from (4) that

$$
S D S(n) \equiv\left\{\begin{array}{l}
6(\bmod 9), \text { if } n \equiv 3(\bmod 9) \tag{5}\\
3(\bmod 9), \text { if } n \equiv 6(\bmod 9)
\end{array}\right.
$$

Thus, by (5), we get $3 \| S D S(n)$. The theorem holds for $k=1$,

If $k>1$, let.
(6)

$$
n=9 t
$$

where t is a positive integer. By
$\begin{aligned} & \text { (7) } \\ & \text { Then, by the result of }[2] \text {, we have }\end{aligned}$
Then, by the result of [2], we have

$$
S D S(n)=123456789\left(1+10^{9}+\cdots+10^{9(t-1)}\right)
$$

$$
\begin{equation*}
=123456789\left(\frac{10^{9 t}-1}{10^{9}-1}\right) \tag{8}
\end{equation*}
$$

Notice that $3^{2} \| 123456789$ and $3^{k-2} \|\left(10^{9 t}-1\right) /\left(10^{9}-1\right)$ by (7). We see from (8) that (2) holds. Thus, the theorem is proved.

References

[1] C. Ashbacher, Some problems concerning the Smarandache deconstructive sequence, Smarandache Notions J. 11(2000), 120-122.
[2] M. -H. Le, The first digit and the trailing digit of elements of the Smarandache deconstructive sequence,
Smarandache Notions J., 12(2001).[3] F. Smarandache, Only problems, Not Solutions, XiquanPublishing House, Phoenix, Arizona, 1993.
Department of Mathematics
Zhanjiang Normal CollegeZhanjiang, GuangdongP.R. CHINA

